The Matter of Heartbleed

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, J. Alex Halderman

University of Michigan, University of California—Berkeley
University of Illinois—Urbana Champaign
International Computer Science Institute
Purdue University
Heartbleed Vulnerability

In April 2014, OpenSSL disclosed a catastrophic bug in their implementation of the TLS Heartbeat Extension.

Vulnerability allowed attackers to dump private cryptographic keys, logins, and other private user data.

Potentially effected any service that used OpenSSL for TLS—including web, mail, messaging and database servers.

An estimated 24-55% of HTTPS websites were initially vulnerable.
TLS Heartbeat Extension

01 length <<length>> bytes random padding
TLS Heartbeat Extension

01 | length | <<length>> bytes | random padding

02 | length | <<length>> bytes | random padding

The Matter of Heartbleed
Heartbleed Vulnerability: server trusts user provided length field and echoes back memory contents following request data
Database Servers

Messaging Servers

Crypto Currencies

Web Servers

POP3/IMAP Servers

SMTP Servers
Tracking the Vulnerability

Data Collection
- Began scanning 48 hours after public disclosure
- Scanned Alexa Top 1 Million and 1% samples of IPv4 every 8 hours

Scanning for Heartbleed
- Modified ZMap to scan for vulnerable versions of OpenSSL
- Instead of exploiting the vulnerability, we checked for non-compliant behavior of vulnerable OpenSSL version
We did not exploit Heartbleed Vulnerability—no private memory is ever sent back by the server.
Top 100 Websites

By aggregating press releases and others’ scans, we found evidence that at least 44 of the Top 100 sites were initially vulnerable.

A small handful of sites remained vulnerable at 24 hours—including Yahoo, Imgur, Stack Overflow, Flickr, Sogou, Ok Cupid, and Duck Duck Go.

The Top 500 sites were patched within 48 hours—when we began our regular scans.
Our First Scan — Disclosure + 2 Days

Unclear who was initially vulnerable beyond the Top 100—little attention was paid to the extension prior to public disclosure.

45% of all sites support HTTPS

Heartbeat Support | No Heartbeat | No HTTPS Support

60% of HTTPS sites support Heartbeat
Our First Scan — Disclosure + 2 Days

60% of HTTPS Sites

Heartbeat Support

No HB Support

No HTTPS Support

55% of HTTPS sites were affected

Vulnerable

Non-Vulnerable

Affected Software

Non-Vuln Software

18% Vulnerable

9% used Non-Affected Software
The Matter of Heartbleed

Estimating Initial Impact

No Scans in the first 48 hours — how do we estimate initial impact?

Upper Bound
If all the servers that support Heartbeat and used affected software were initially vulnerable—55% of HTTPS sites were affected.

Lower Bound
TLS 1.1 and 1.2 were introduced along with Heartbeat in OpenSSL 1.0.1
32.6% of sites supported TLS 1.1 or 1.2, of which 73% use affected software

We estimate that 24-55% of Alexa sites were initially vulnerable
What about the rest of the Internet?

11% of IPv4 HTTPS hosts supported Heartbeat

6% of HTTPS hosts were vulnerable

We investigated clusters of similar certificates and found 74 common vulnerable devices
Patching Behavior

Vulnerable Percentage of HTTPS Hosts

Date

Alexa Top 1 Million Sites
Public IPv4 Address Space
Patching Behavior

Vulnerable Percentage of HTTPS Hosts

Date

Alexa Top 1 Million Sites
Public IPv4 Address Space
How fast is fast enough?

Vulnerable Percentage of HTTPS Hosts

Date

Alexa Top 1 Million Sites
Public IPv4 Address Space

First Evidence of Attacks
Attack Scene

We examined packet traces from Lawrence Berkeley National Laboratory (LBNL), the International Computer Science Institute (ICSI), and an Amazon EC2 honeypot.

No evidence of attack prior to disclosure.

We detected the first scan traffic 22 hours after disclosure from University of Latvia.

In total, we observed 6,000 probe attempts from 692 hosts.

Two major outliers—filippio.io (3,964 attempts from 40 hosts) and ssllabs.com (16 attempts from 5 hosts).
Attack Scene

Only 11 hosts scanned both EC2 honeypot and ICSI network.

Only 6 hosts scanned more than 100 hosts at ICSI—Michigan, TU Berlin, Chinanet (2), Nagravision, and Rackspace.

Appears to be little Internet-Wide scanning.

201 hosts scanned EC2 honeypot—attackers are likely targeting cloud providers’ address space.

<table>
<thead>
<tr>
<th>AS Name</th>
<th>Scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon.com</td>
<td>4,267</td>
</tr>
<tr>
<td>China Telecom</td>
<td>507</td>
</tr>
<tr>
<td>China169 Backbone</td>
<td>147</td>
</tr>
<tr>
<td>Chinanet</td>
<td>115</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>92</td>
</tr>
<tr>
<td>SoftLayer</td>
<td>85</td>
</tr>
<tr>
<td>University of Latvia</td>
<td>50</td>
</tr>
<tr>
<td>Rackspace</td>
<td>47</td>
</tr>
<tr>
<td>GoDaddy.com</td>
<td>34</td>
</tr>
</tbody>
</table>
Global Vulnerability Notifications

Two weeks post disclosure, nearly 600,000 hosts remained vulnerable

We contacted network administrators for non-embedded devices

We aggregated vulnerable hosts by WHOIS abuse contact (4,648 distinct contacts)

Split abuse contacts into two groups in order to measure the impact of large-scale notification
Impact on Patching

The graph shows the percentage of notified with some IPS patched over time. The x-axis represents the time of scans, while the y-axis shows the percentages of notified. There are two groups: Group A with April 28th notifications and Group B with May 7th notifications. The graph indicates a higher percentage of Group B notified compared to Group A, with both groups showing an increase in the percentage of notified as time progresses from 04/29 to 05/20.
Impact on Patching

47% increase in patching
Notification Responses

![Graph showing the percentage of notified hosts with some IPs patched over time]

- **Human Responses**
- **Automated Responses**
- **No Responses**
- **Delivery Failure Responses**

X-axis: Time of Scans

Y-axis: Percentages of Notified with Some IPs Patched

- 04/29
- 05/06
- 05/13
- 05/20
Cryptographic Keys at Risk

Patching isn’t enough—cryptographic keys can also be stolen

Proven during CloudFlare Challenge, in which keys were retrieved from generic nginx server

Security community recommended that administrators replace keys, revoke vulnerable certificates, and deploy perfect forward secrecy
Cryptographic Keys

We combined our Heartbleed scans with our daily scans of the HTTPS ecosystem and ICSI’s passive Certificate Notary in order to investigate certificate replacement.

10.1% of the sites we found vulnerable replaced their certificates.

14% *re-used* the vulnerable private key on new certificate.

4% revoked their vulnerable certificates.

Only 44% of connections use *Perfect Forward Secrecy*—Heartbleed did not spur further deployment.
Conclusion

Heartbleed took the Internet by surprise in April 2014.

Internet-scale scanning allowed us to track who was vulnerable and understand what happened.

For the most part, users did well at patching, but clearly not well enough to outpace attackers and hosts remain vulnerable today.

We completed a large-scale notification effort in order to help spur patching — surprisingly positive result.

Ultimately, we hope that this understanding will help us be better prepared the next time this happens.
Questions?

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, J. Alex Halderman

heartbleed@umich.edu