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ABSTRACT
Researchers rely on lists of popular websites like the Alexa Top
Million both to measure the web and to evaluate proposed proto-
cols and systems. Prior work has questioned the correctness and
consistency of these lists, but without ground truth data to compare
against, there has been no direct evaluation of list accuracy. In this
paper, we evaluate the relative accuracy of the most popular top
lists of websites. We derive a set of popularity metrics from server-
side requests seen at Cloud�are, which authoritatively serves a
signi�cant portion of the most popular websites. We evaluate top
lists against these metrics and show that most lists capture web pop-
ularity poorly, with the exception of the Chrome User Experience
Report (CrUX) dataset, which is the most accurate top list compared
to Cloud�are across all metrics. We explore the biases that lower
the accuracy of other lists, and we conclude with recommendations
for researchers studying the web in the future.
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1 INTRODUCTION
Nearly a quarter of recent Internet measurement papers rely on lists
of popular websites like the Alexa Top Million [2, 27]. Unfortunately,
recent results have called into question the soundness of these “top
lists,” and, by proxy, the research results derived from them [16,
18, 19, 25–27]. Further exacerbating the concern, Amazon recently
announced the planned shutdown of the Alexa Top Million [5],
the most commonly used list of websites and the cornerstone of
amalgam lists like the Tranco Top Million [18].

Alexa’s retirement presents an opportunity for the research com-
munity to establish more trustworthy methodologies for studying
the web. However, evaluating top lists is challenging, requiring
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access to privileged data, either in the form of sensitive browsing
data from a large, globally distributed set of web clients or access
to server logs from a signi�cant number of independently oper-
ated websites. As a result, no work has yet directly evaluated the
accuracy of the Alexa Top Million or proposed alternatives, leaving
researchers without a clear alternative or a principled path forward.

In this paper, we partner with Cloud�are, a popular CDN and
DDoS mitigation provider, to evaluate the relative accuracy of top
lists of websites. While Cloud�are authoritatively serves tra�c for
only about a quarter of top sites, this is signi�cantly more than
any other provider, and we �nd that despite its limitations, the
perspective uncovers meaningful di�erences between top lists.

Each top list employs its own methodology for inferring popu-
larity, and we start by deriving a set of seven server-side metrics
that present a diverse set of perspectives on what it means for a
website to be popular. These include metrics that approximate both
the number of page loads served by each website and the number
of unique clients that access each website. Surprisingly, we �nd
that all seven of our metrics evaluate the relative accuracy of the
set of sites captured by top lists identically (i.e., all metrics agree
on which top list captures best the set of most popular sites).

Overall, we �nd that top lists (including Alexa) capture the set
of top websites relatively poorly across all of our metrics with one
exception: Google’s Chrome User Experience Report (CrUX), which
has recently begun publishing rank order magnitude buckets (i.e.,
top 1K, 10K, 100K, 1M) of the most popular websites as seen by
Google Chrome. In contrast to other top lists, CrUX is as similar
to Cloud�are metrics as the varied Cloud�are metrics are to one
another. We investigate recent papers that utilize top lists and �nd
that the vast majority use top lists as only an unordered set of
websites to study. As such, CrUX is a compelling set of websites to
consider in future research studies. Cisco Umbrella—a rank order
list of the most commonly queried names rather than websites—
captures the set of popular sites second best, but is not able to
capture the relative accuracy of individual websites.

Through further analysis of Cloud�are data alongwith additional
supplementary data from Google Chrome, we analyze the biases
in the websites included/excluded by top lists and investigate why
lists show inconsistent accuracy in ranking websites. We conclude
with recommendations for the research community on how to more
accurately study the web moving forward.
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2 BACKGROUND AND RELATEDWORK
Both industry and academic research rely heavily on published
lists of popular websites like the Alexa Top 1 Million Websites [1]
to model web browsing behavior [2, 27]. Indeed, a 2018 study by
Scheitle et al. found that more than 10% of papers at top Internet
measurement (22% of papers), security (9%), networking (6%), and
web (8%) venues used a list of popular websites as the foundation
of their analysis [27]. At the extreme, more than a quarter of papers
at IMC’17 relied on a list of popular websites like the Alexa Top
Million.

There are several competing top lists, each of which employs a
unique methodology for inferring popularity. In some cases, lists
speci�cally rank the most popular websites whereas others simply
compute the most popular domain names independent of the appli-
cation layer protocol. In nearly all cases, lists attempt to provide
an approximate rank order list of names. Below, we detail top lists
appearing prominently in prior academic literature:

• The Alexa Top 1 Million [1] approximates site popularity by
tracking the browsing behavior of several million users through
partnerships with a reported 25K browser extensions as well as
through websites that install Alexa Certify code [4]. While their
methodology is private, Alexa states that their rank is calcu-
lated daily based on “the average daily visitors and pageviews
to every site over the past 3 months” [3, 6]. The Alexa Top Mil-
lion is the most commonly used list of popular websites [27],
but Alexa has announced that it will be discontinued in Decem-
ber 2022 [5].

• The Cisco Umbrella 1 Million [10] is a list of the most popular
names (e.g., .com is ranked #1) looked up using Cisco Umbrella’s
DNS service. Their ranking is based on a propriety algorithm,
which “uses the number of unique client IPs visiting each do-
main, relative to the sum of all requests to all domains” to
calculate popularity [33].

• The Majestic Million [20] is a list of popular websites main-
tained by Majestic SEO, which is calculated based on the num-
ber of backlinks that each site has [21].

• The Secrank list [34] is a researcher-built list that aggregates
several features of DNS data from a major resolver in China.
Each IP address “votes” for domains based on request volume
and frequency of access, and IP addresses are weighted ac-
cording to their requests’ domain diversity and total volume.
The list is designed to be stable, transparent, and resistant to
manipulation.

• The Tranco Top Million List [17, 18] aggregates data from the
Alexa, Umbrella, and Majestic lists over a 30 day window to
form a ranking that is more temporally stable and resistant to
adversarial manipulation.

• The Trexa Top Million [35] interleaves Tranco and Alexa rank-
ings (i.e., additionally weighting towards Alexa) to better ap-
proximate the observed browsing (i.e., intentional URL loads) of
52K Firefox users who opted into a Mozilla research study [35].

There exist other commercial lists, like SimilarWeb [29] and Com-
score [12], which are paywalled and rarely used in academic re-
search. Others, like Cloud�are Radar [11], lack public APIs, which
have precluded research use.

There is little agreement between top lists in terms of both over-
lap and rank order of names [27]. Further, the choice of list can lead
to dramatically di�erent downstream research conclusions [19, 27].
A series of past studies have shown that lists are unstable, incon-
sistent, and vulnerable to external manipulation [16, 19, 25–27].
Most recently, Scheitle et al. formalized three key properties for top
lists: stability, consistency, and transparency [27]; they show that
top lists are unstable, have little intersection, and rarely disclose
methodological details. However, without clear sources of ground
truth, these studies have stopped short of understanding whether
instability is indicative of low accuracy and which, if any of the
lists, best represent user behavior.

In response to increased skepticism of existing top lists, several
alternative ranking schemes have been proposed [7, 16, 22, 23, 35].
Naab et al. propose replacing domain-based rankings with BGP
pre�x-based rankings by weighting and aggregating domains that
belong to the same Internet pre�x [23]. Aqeel et al. propose mea-
suring popularity at a page-level instead of domain-level granular-
ity [7]. Most recently, Xie et al. propose a “voting”-based method-
ology based on DNS request volume and frequency. It is unclear
whether these proposals are more accurate and they have seen little
widespread adoption.

In February 2021, Google Chrome began releasing rank order of
magnitude popularity data (i.e., Top 1K, 10K, 100K, 1M, and >1M
buckets) in their publicly accessible ChromeUser Experience Report
(CrUX) [8]. The dataset is curated monthly by aggregating browsing
data from Chrome users who have opted in to history syncing, have
no history sync passphrase set, and have usage statistic reporting
enabled [8, 13]. CrUX is ranked by completed pageloads (measured
by First Contentful Paint) and aggregated by web origin, and it
adheres as closely as possible to user-initiated pageloads (e.g., it
excludes tra�c from iframes).

While Chrome provides only rank order magnitude data (e.g.,
Top 1K) rather than a full rank order list, we �nd that most research
papers use top lists only as an ordered set of websites for study. We
survey papers at USENIX Security, IMC, NSDI, SOUPS, NDSS, and
WWW in 2021, and we �nd that of the papers using top lists, 50
(85%) use top lists only as a set, typically as a proxy for “popular
websites”—only 9 (15%) use website rank directly. (A small handful
of papers (5, 8%) leverage the lists as both a set and rank ordered
list.) As such, we evaluate CrUX alongside other ranked lists as a
possible alternative.

3 SERVER-SIDE POPULARITY METRICS
At the core of our analysis are server-side HTTP request logs col-
lected from Cloud�are, a global content delivery network (CDN)
and DDoS-mitigation provider that serves an estimated 10% of all
web tra�c and the plurality of websites in the Alexa Top Million
(⇡20%, Table 1). Cloud�are works by acting as the authoritative
DNS provider and reverse proxy for customer websites. As such,
Cloud�are’s vantage point provides authoritative data on the num-
ber of requests that its customers receive. In this section, we detail
how we leverage Cloud�are’s server-side perspective to build a set
of metrics that we can use to evaluate top lists of websites. In the
next section, we describe how we use these metrics to evaluate top
lists, their limitations, and the ethics of our study.
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(a) Jaccard Index (b) Spearman Correlation

Figure 1: Intra-Cloud�are Metric Consistency—We compare seven metrics derived from Cloud�are request logs for measuring website
popularity against one another to determine internal consistency: (1) All HTTP Requests, (2) TLS Handshakes, (3) HTTP Requests for Root
Page, (4) HTTP requests limited to the �ve most popular browsers, (5) Unique IPs, (6) Unique IPs accessing the root page, and (7) Unique
IPs limited to the �ve most popular browsers. We �nd that there is disagreement among metrics, likely because websites make a variable
number of requests to load a page. Accordingly, we compare top lists against all seven Cloud�are metrics.

3.1 Filters and Aggregations
Our primary goal is to compare rank-ordered lists provided by
sources like Alexa, Majestic, and Tranco to the authoritative van-
tage point that Cloud�are o�ers. However, there are a number of
complications that make these comparisons di�cult to conduct
fairly. Chie�y, each top list uses a slightly di�erent methodology,
meaning that comparing a top list against just a single metric (e.g.,
all HTTP requests a domain sees) may erroneously conclude that
the top list performs poorly, when the underlying comparison is
itself unfair. In addition, there are many ways to “count” requests
on the server-side—ranging from a raw count to unique client IPs—
that may a�ect downstream results if not chosen appropriately. To
address these methodological complications, we begin by consid-
ering two aspects of the metrics that could be computed from the
Cloud�are perspective, which we refer to as �lters and aggregations.
Filters. A �lter is a condition imposed to collect a portion of
the dataset, often for data quality. For example, one �lter looks
only at HTTP requests that returned a 200 OK status message, while
another restricts analysis only to TLS handshakes. In sum, we
consider seven di�erent �lters:

1. All HTTP(S) Requests
1.1. Limited to MIME-type text/html resources
1.2. Limited to response code of 200
1.3. Limited to non-null Referer header
1.4. Limited to top 5 most popular browsers

2. TLS Handshakes
3. Root Page Loads (i.e., GET /)

Aggregations. An aggregation is a way to count server-side
request logs in the dataset after �ltering. For example, this may be

the raw count (e.g., full number of requests) or the unique client
IPs that connect to a website. We consider three aggregations:

1. Raw Count (e.g., number of requests)
2. Unique Client IPs (per day)
3. Unique Client IP and User Agent tuples

3.2 Evaluating Filters and Aggregations
Taken together, the Cloud�are data perspective a�ords us 21 �lter–
aggregation combinations. However, many of these combinations
provide similar results, both in terms of being closely correlated
with one another and evaluating top lists similarly. As our primary
goal is to build a diverse set of metrics that cohesively measure per-
formance, we �rst consider which �lter-aggregation combinations
provide the most variance in website popularity.

We compare each pair of �lter-aggregations in two steps. First,
we generate rank-ordered lists, similar to top lists, for each �lter-
aggregation combination. We then cross-compare each two �lter-
aggregation rank lists using two measures of similarity: Jaccard
Index (� � ) and Spearman’s Rank Correlation (AB ). Jaccard Index
measures the intersection of two lists divided by the union of the
lists, providing a 0–1 score that quanti�es the unordered similarity of
two lists. Spearman’s Rank Correlation is a nonparametric measure
of how well the rank orders of two lists correlate, but operates on
only their intersection. We show the full comparison between all
21 �lter-aggregation combinations in Appendix A, Figure 8.

We observe signi�cant redundancy in the 21 �lter-aggregation
combinations. Filtering out requests that lead to unsuccessful re-
sponses (i.e., non-200 HTTP status code) does not appreciably a�ect
results compared to all HTTP requests because the vast majority
of requests are successful (AB = 0.97, � � = 0.84). Requests with an
empty or missing Referer header is similar to requests from the
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top �ve browsers (AB = 0.92, � � = 0.77). We focus on the latter
since it is a more direct measure of browsing behavior. We exclude
text/html �lter, because it acts similarly to TLS handshakes and
requests from top browsers. Across all request aggregations, unique
client IP addresses is nearly identical to our unique (IP, User Agent)
aggregation. We choose the simpler of the two—unique IP address.

3.3 Selecting Final Measurements
We select seven �nal �lter-aggregation combinations in Figure 1
that capture the most diversity in our dataset: (1) all HTTP(S) re-
quests, (2) HTTP(S) requests from top �ve browsers, (3) HTTP(S)
requests for root page, (4) TLS handshakes, (5) unique client IP
addresses per day, (6) unique client IP addresses requesting root
page, and (7) unique IP addresses from top �ve web browsers.

For these seven metrics, both list composition and rank varies
between Cloud�are metrics (Figure 1), but in all cases, we see mod-
erate to very strong rank correlation between metrics and 0.28–0.82
Jaccard Indices. There is strong correlation between the metrics
found to be most similar by Jaccard Index and by Spearman Corre-
lation (i.e., metrics that have high set intersection also have high
Spearman rank correlation).

The two metrics with the lowest correlation are all HTTP(S)
requests and root page requests (AB = 0.41, � � = 0.28). This is not
inherently surprising since websites make a varying number of
sub-requests to load additional web resources. However, we note
that the metrics bookend the number of page loads for a website
because all page loads result in at least one request and a root page
load is inherently a page load. TLS handshakes is more closely
correlated with both since multiple HTTP requests can be sent in a
single TLS session and each request requires a TLS handshake for
HTTPS websites.

As we will show in Section 5, there is perfect agreement between
all four request-based metrics when rank ordering the accuracy of
top lists by inclusion of popular domains (i.e., AB = 1.0 for all pairs).
We argue that given this agreement and the fact that all requests
and root page requests over- and under-estimate page loads, that the
set of request-based metrics together can serve as a rough estimate
for the page loads for each site. We further argue that our client-IP
roughly models the number of unique visitors that a website serves
per day, especially when considering that our unique (user agent,
IP) metric is nearly identical (AB = 0.99, � � = 0.95).

3.4 Summary
Cloud�are metrics vary when compared against each other. This
is not unexpected and we optimize for a set of metrics to provide
di�ering perspectives on what it means for a website to be popular.
Two of our metrics, (3) Root Page Loads and (1) HTTP Requests, are
chosen to be lower and upper limits on the number of page loads
that a site receives since total page loads cannot exceed the number
of requests a site receives and page loads cannot be smaller than
the number of root page loads. If a top list is more closely correlated
with one Cloud�are metric than another, it may simply indicate
a di�erence in popularity metric. However, if top lists correlate
similarly with both bookends, they likely serve as a rough indicator
for the number of page loads that a site receives. In addition, our
client IP metrics serve as an indicator for the number of visitors of

Top List Rank Magnitude

1K 10K 100K 1M

Alexa 14.97 23.16 26.63 23.12
Majestic 10.12 15.86 23.44 17.58
Secrank 0.57 3.65 6.37 7.8
Tranco 9.98 15.69 24.83 19.65
Trexa 11.62 18.75 25.19 21.5
Umbrella 1.99 4.09 6.75 10.86
Chrome UX Report (CrUX) 24.0 31.97 30.67 23.57

Table 1: Cloud�are Coverage of Top Lists—Percent of websites
in the top lists that we evaluate whose content is served by Cloud-
�are. Cloud�are serves the largest fraction of top sites compared to
any other single provider.

each website. Together, these popularity criteria form a framework
to benchmark top lists against.

4 EVALUATION METHODOLOGY
In the last section, we derived a set of server-side metrics that can be
used to used to measure the relative popularity of websites served
by Cloud�are. In this section, we describe how we use this data to
evaluate the accuracy of top website lists. We start by discussing
how we collect and normalize lists of popular websites, and then
we present our methodology for using our limited perspective into
only Cloud�are sites to evaluate broader lists.

4.1 Collecting Top Lists
We retrieved daily snapshots of Alexa, Umbrella, and Majestic from
the archive provided by Scheitle et al. [30], Tranco rankings from
the project’s archive [31], and Secrank rankings from the project’s
archive [28] for February 1–28, 2022. Using these rankings, we
replicated the Trexa list’s construction algorithm as speci�ed by
Zeber et al. [32]. We retrieve the public February 2022 CrUX global
data from their public BigQuery project [9]. We leverage Cloud�are
request data and Chrome telemetry data from the same date range.
Unless noted otherwise, our evaluation is based on data from this
time period; we average the results across days in the month.

4.2 Normalizing List Formats
We can only compare lists fairly if they contain the same repre-
sentations of names and websites. Empirically, we �nd that Alexa,
Majestic, Secrank, Tranco, and Trexa are aggregated by domain
name, near identically to the Mozilla Public Su�x List (PSL), as
shown in Table 2. On the other hand, Umbrella is aggregated by
fully quali�ed domain name (FQDN), which is natural given that
the list is of the most queried names, not the most popular websites.
CrUX is aggregated by web origin (e.g., https://google.com).

These discrepancies complicate directly comparing lists, but
without raw data, we cannot recompute lists using the same aggre-
gation function. Instead, we group names by PSL-de�ned domain
and choose the smallest rank (i.e., most popular) value as the rank
for each domain to normalize list formats. This a�ects the Alexa,
Majestic, Seclist, Tranco, and Trexa lists very little since they are
aggregated by domain, which are nearly all public su�xes. This
normalization a�ects Umbrella and CrUX lists the most since they
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(a) Jaccard Index (b) Spearman Correlation

Figure 2: Correlation Between Top Lists and Cloud�are—We evaluate top lists against our seven Cloud�are metrics to evaluate their
accuracy. We �nd that list overlap between Cloud�are domains in top lists and Cloud�are request-based metrics is poor, and that CrUX most
closely matches Cloud�are for all seven metrics based on Jaccard index (an intersection-based metric) while Alexa and Majestic perform
worst. Only CrUX achieves Jaccard indices comparable to agreement between the Cloud�are metrics in Figure 1a. List ordering between top
lists and Cloud�are metrics shows at best weak correlation, with Alexa performing the best and Umbrella and Majestic performing the worst.
Note: we cannot compute Spearman correlations for CrUX since it is rank-magnitude bucketed.

Top List Rank Magnitude

1K 10K 100K 1M

Alexa 0.3 0.32 1.05 2.31
Majestic 5.87 1.30 0.28 0.10
Secrank 0.0 0.0 0.0 0.0
Tranco 0.0 0.0 0.0 0.00
Trexa 0.18 0.19 0.44 1.31
Umbrella 71.00 77.05 78.25 74.11
Chrome UX Report (CrUX) 75.4 72.09 70.54 66.49

Table 2: Percent of Domains deviating from Public Su�x
List—Our PSL-based list normalization a�ects Alexa, Majestic, Se-
crank, Tranco, and Trexa relatively little, but could cause us to
underestimate the accuracy of Umbrella and CrUX.

are aggregated by name rather than domain. Despite this method-
ology worsening their accuracy, we show in the next section, that
both Umbrella and CrUX evaluate to be more accurate than the
other lists. Thus, the discrepancy does not meaningfully change
our conclusions or recommendations. Without normalization, all
correlations are lower and this appears to be a strictly worse alter-
native.

4.3 Evaluating Lists Against Cloud�are
We hope to evaluate top lists against Cloud�are using the same
metrics as we compared Cloud�are metrics against one another:
Jaccard Index and Spearman Rank Correlation. As before, Jaccard
Index (� � ) quanti�es the number of elements shared between lists;
Spearman’s RankCorrelation (AB ) quanti�es the correlation between
the ranks of shared elements.

However, unlike in the last section, because Cloud�are serves
tra�c for only a subset of top sites (Table 1), we cannot directly
compare the two ranked lists. To build comparable lists of sites, we
�lter out non Cloud�are-sites from each top list and compare the
subset of Cloud�are sites against the same number of top sites from
Cloud�are. For example, if = of Alexa Top Million sites are powered
by Cloud�are, we compare that set of= ranked sites against the top=
Cloud�are sites.We use the samemethodologywhether considering
the Top 1K, 10K, 100K, or 1M sites. This method would provide only
very rough results if Cloud�are served a small fraction of websites
in each top list, but we �nd that in most cases, Cloud�are serves
hundreds of thousands of the top sites, which provides enough
signal to show meaningful di�erences between top lists.

To �lter top lists down to only Cloud�are-powered sites, we
perform a HTTP HEAD request against each website in our top lists,
and remove any website that does not include the cf_ray HTTP
header that Cloud�are includes on any website that they proxy and
serve authoritatively. We show the number of websites served by
Cloud�are in Table 1.

4.4 Interpreting Results
There do not exist recommendations for interpreting list intersec-
tion; we caution readers that Jaccard Index often appears pessimistic
at �rst glance. For example, if two lists of 100 websites have 90 sites
shared, � � = 0.82. Spearman’s correlation coe�cients range from
[�1, +1], indicating a positive or negative monotonic correlation. In-
terpretation is typically similar to that of Pearson correlation: <0.10
is negligible, 0.10–0.39 weak, .40–.69 moderate, 0.70–.89 strong, and
>.90 very strong. All ?-values for Spearman’s rank correlations
that we present are signi�cant (? ⌧ 0.05).
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We suggest that readers primarily focus on Jaccard index as the
more important metric for several reasons: (1) researchers primarily
use top lists as an unordered set of websites rather than investigate
the ranks of individual sites, (2) rank correlation is secondary to
inclusion when studying popular websites (i.e., if a top list fails to
include the most popular sites, it is typically not meaningful that it
correctly ranked the subset of sites it �nds), and (3) set intersection
can be computed for all top lists in our study. Because Google CrUX
provides only rank order magnitude, we cannot compute Spearman
rank correlation to evaluate it against our Cloud�are metrics.

4.5 Limitations
There are several limitations to our study’s methodology:
Incomplete coverage. Our study is premised on data from
Cloud�are, which serves only a fraction of top websites. While
this is a large enough sample to detect di�erences in top lists, it is
not the full set of popular websites nor a random sample. There is
likely some bias in the sites that choose to use Cloud�are. For exam-
ple, none of the top ten sites use Cloud�are. It is unclear whether
this could cause bias in our evaluation.
Server-side request-based metrics. We compare top lists to a
set of metrics that we derive from HTTP requests, which imper-
fectly estimate web requests. Further, without exact knowledge of
how each top list is constructed, some lists may have more or less
similar metrics to ours. Both of these misalignments could a�ect
our evaluation.
Multi-CDN site con�gurations. Cloud�are may not host all
resources on popular websites and websites could potentially use
multiple CDNs to serve content. Given that Cloud�are authorita-
tively serves DNS for domains, and provides multi-CDN functional-
ity to only a small number of customers, we know this con�guration
is rare and do not expect it to noticeably a�ect our results.
Temporal bias. Our data collection period is relatively short,
occurring during the COVID-19 pandemic and Russia’s full-scale
invasion of Ukraine. These black swan events may a�ect the popu-
larity of websites during the study time period. It is likely worth
re-measuring the accuracy of top lists again in the future.

4.6 Ethical Considerations
To protect the privacy of Cloud�are customers and their customers’
clients, the Stanford research team did not have access to any in-
dividual customer or website records or any identifying data (e.g.,
popular domains). All analysis was performed by providing anal-
ysis scripts that output aggregate summary results (e.g., Jaccard
indices and Spearman correlations of a top list with internal Cloud-
�are metrics) to Cloud�are. Results were inspected by Cloud�are
sta� before being shared to ensure that no customer or user infor-
mation was leaked. No analysis required Cloud�are to investigate
individual websites or clients, and all analysis was performed in
accordance with Cloud�are’s privacy policy. No additional data
was collected or stored by Cloud�are for the purpose of our study.
Because the Stanford research team analyzed only aggregate data
“without any individually identi�able information”, our analysis did
not constitute human subjects research per our institution’s IRB
guidelines.

4.7 Summary
Evaluating top lists fairly against our Cloud�are baseline requires
some nuance. Top lists do not present sites in a directly comparable
format, but we �nd that truncating all list elements to PSL-de�ned
domain name provides a favorable common denominator for eval-
uation. To account for Cloud�are’s incomplete coverage of the
Internet, we formulate our list comparisons to only operate on
the subset of sites controlled by Cloud�are. In the next section,
we perform our evaluation of top lists against our set of metrics,
ultimately �nding that despite our metrics showing signi�cant vari-
ance amongst themselves, they evaluate the accuracy of top lists
with perfect agreement.

5 EVALUATING TOP LISTS
In this section, we evaluate top website lists against our Cloud�are
popularity metrics. We �nd that lists evaluate consistently against
our set of Cloud�are page views and client IP metrics. While most
lists have relatively low raw intersection, Google CrUX performs
notably better than other lists, inline with the di�erences amongst
individual Cloud�are metrics. Beyond CrUX, we �nd inconsistent
evaluation results when evaluating the ranks of individual sites.

5.1 Websites Captured By Top Lists
We �rst compare the set of websites captured by top lists with our
seven Cloud�are request and requestor metrics. Surprisingly, we
�nd that our seven Cloud�aremetrics rank order the accuracy of top
lists perfectly consistently (AB = 1.0 for all pairs of metrics) when
measuring unordered list intersection (Jaccard Indices). Restated,
our set of Cloud�are metrics agree on which top lists best capture
the unordered set of most popular sites.

There is relatively small intersection betweenCloud�are-powered
sites in top lists and the Cloud�are sites we expect, even in light of
di�erences between Cloud�are metrics (Figure 2). However, given
the non-negligible disagreement amongst Cloud�are metrics, im-
perfect measurement methodology, and lack of interpretation guide-
lines for Jaccard Index, we suggest that readers consider relative
values rather than evaluate the raw numerical values.

Secrank (� � = 0.08–0.11), followed by Majestic (� � = 0.13–0.15)
and Alexa (� � = 0.13–0.19) show the least overlap across all request
and client metrics (Figure 2a). CrUX evaluates notably better than
all lists by intersection (� � = 0.23–0.43). Umbrella, which comes in
second place (� � = 0.17–0.29), is notably worse than Chrome, but
better than Alexa and Majestic. Tranco and Trexa approximately
average the scores of the lists they combine, falling in the middle.
The Jaccard Indices we observe for CrUX (0.23–0.43) fall inline with
the di�erences between Cloud�are metrics (0.27–0.82), strongly
hinting that it captures popular websites and di�erences are within
realm of error that arises from methodological di�erences in mea-
suring popularity—it would be unfair to expect an external list to
have better agreement with individual Cloud�are metrics than they
do with one another. Umbrella in the best case barely reaches the
lower end of the intra-Cloud�are � � range. None of the other lists
reach that range with � � = 0.08–0.24.

It is di�cult to ascertain exactly why certain lists capture pop-
ularity better than others, especially when many methodological
details are not public. Secrank is based on DNS data from China,
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(a) Jaccard Index (b) Spearman Correlation

Figure 3: Popularity Metrics Over Time—For each day in February 2022, we compute correlation scores between top lists and all HTTP
requests for the top 1M domains. (Note that the CrUX list is �xed since it is aggregated monthly.) We �nd that list correlations are somewhat
periodic, with Jaccard indices best on weekdays and Spearman correlations best on weekends for most lists, but that variations in correlation
scores largely do not a�ect which lists more closely approximate server-observed requests.

which introduces signi�cant geographical bias (Section 6.3). Majes-
tic computes popularity based on backlinks to websites, and there
is little evidence to support that the number of links to a websites
correlates strongly with page views or number of visitors. Alexa uti-
lizes both page views and visitors, but has a small install base, and is
likely biased based on the browser extensions that the company has
partnered with. In contrast, Umbrella and CrUX are computed o�
of a signi�cantly larger set of users, and CrUX is computed directly
based o� of Google Chrome usage.

5.2 Evaluating Rank Order
Rank correlation between Cloud�are and top lists is less consis-
tent than our unordered list intersection metric, likely because the
set of intersecting websites is relatively small. Spearman Ranks
do not correlate perfectly by list, but we �nd that Alexa, Tranco,
and Trexa show the highest rank correlations and that Umbrella,
Majestic, and Secrank perform poorly (Figure 2b). Secrank is the
least correlated with all Cloud�are metrics by both � � and AB . We
cannot evaluate CrUX by rank correlation because it provides only
rank-order magnitude rather than individually ranked sites.

It is initially surprising that Umbrella does poorly in rank order
correlation relative to Alexa since it had a relatively high intersec-
tion with popular Cloud�are sites. Part of this could be due to how
the list is constructed and our measurement methodology. Umbrella
has been observed to break ties in list ordering with long strings
of alphabetically sorted domains [25], which may drive the poor
Spearman correlation among a reasonably large list intersection.
Further, our process to normalize site names likely disadvantages
Umbrella’s origin-based rankings and arti�cially weakens the Spear-
man correlation.

Inaccuracies could also arise from our Cloud�are metrics be-
ing web-driven, whereas Umbrella is DNS based. Popular domains

queried by a large number of users likely bubble to the top, but
caching, TTLs, and other DNS complexities prevent capturing �ne
grained popularity. There could also be bias in data collection
locations—Cisco Umbrella has a signi�cant enterprise user base.
Investigating our Chrome data broken down by country, we see
that Umbrella has considerably better rank correlation for clients
in the United States than other top lists, but worse rank correlation
in other countries (Section 6.3). Umbrella may see the presence of
popular sites in other regions, but be unable to discern their exact
popularity.

Ultimately, we shy away from drawing signi�cant meaning
from rank correlations for several reasons: (1) the intersections
between non-CrUX top lists and Cloud�are are small (e.g., Alexa
has � � = 0.13–0.19) and it is unclear if there is meaning in the rank
correlation metric within the small intersection, (2) the values show
little variance between lists and it is unclear at what point they
are more driven by noise than signal, and (3) researchers typically
use lists as an unordered set of websites, which Jaccard Index best
captures. For these reasons, we still consider Umbrella to be the best
alternative to CrUX, despite its lackluster rank order evaluation.
Summary. Despite a messy set of metrics from Cloud�are, we
�nd that CrUX is notably better at capturing popular websites than
other top lists as de�ned by visit and visitor metrics. Umbrella
does not portray itself as capturing the most popular websites—
it captures the most queried domains—but we �nd that it better
captures the set of popular websites than alternatives. However,
Umbrella is not accurate enough to capture the ranks of individual
websites. This is likely due to combination in how it ranks large
sets of websites alphabetically within the list when it cannot de-
termine rank accurately as well as biases in Umbrella’s user base.
Majestic’s link-based methodology does not capture well the set
of sites deemed popular by visits and unique visitors. Alexa does
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better than Majestic, but notably worse than CrUX, and regardless,
will soon be deprecated.

5.3 Small Inaccuracies or a Major Problem?
Although top lists o�er ranked lists of domains, most researchers an-
alyze domains as an unordered set of rank-magnitude buckets. For
example, researchers may be interested in studying some property
of the top 10K or top 100K websites. As such, a pressing ques-
tion is: to what extent do top lists place domains into incorrect
rank-magnitude buckets? We investigate the movement of domains
from one rank-magnitude bucket to another to understand whether
di�erences could alter downstream research results.

We begin by identifying the sets of domains for four popular rank-
magnitude buckets—1K, 10K, 100K, and 1M—from the Cloud�are list.
As noted in Section 4, many of the Cloud�are metrics do not agree—
to account for this, we restrict our analysis to the set of domains
that two metrics that bookend pageloads (root page fetches and all
HTTP requests) both place into a given bucket. We then compare
these rank-buckets to those created by each top list we study. We
only consider movement of domains that are Cloud�are operated.
We visualize rank-movement for the Alexa list and CrUX list in
Figure 5. The results for Majestic, Tranco, Trexa, and Umbrella
follow a similar pattern to Alexa and produce similar �gures. We
discuss both below:
Alexa Top Million. There is a signi�cant amount of rank mag-
nitude movement between the intersection of Cloud�are and Alexa.
For instance, of the 1,790 domains we measure in the Alexa top 10K,
70% of them are ranked by Cloud�are in a lower rank-magnitude
bucket, and 27.2% of them are ranked by Cloud�are in a bucket two
or more orders of magnitude less popular. This phenomenon is even
more striking at smaller rank-magnitudes: 87.1% of the Alexa top
1K are overranked (based on an average of 210 sites), and 56.7% are
overranked by two or more orders of magnitude. These numbers
likely underestimate how poorly the top lists comport within each
rank bucket, because the rank magnitude of websites that strictly
intersect with Cloud�are are likely lower in the global top list. Re-
searchers who use top subsets of Alexa (or Majestic, Tranco, Trexa,
and Umbrella rankings) must thus contend with large volumes of
non-mainstream sites cluttering their datasets.
ChromeUser ExperienceReport (CrUX). TheCrUX listmuch
more closely approximates the Cloud�are list by rank-magnitude
movement: 47.1% of the 1410 domains in the CrUX top 10K are over-
ranked compared to Cloud�are, and only 1% of them are overranked
by two or more orders of magnitude. While CrUX is not a perfect
match with Cloud�are, it shows signi�cantly more rank-magnitude
agreement than the other top lists.

5.4 Temporal Stability
We next turn to study if top list performance is a�ected by window
of measurement or changing the platform that measurements are
drawn from. All of our measurements presented thus far are com-
puted on a daily basis and averaged over all days in February 2022.
However, top lists vary signi�cantly by day [27], and may evaluate
di�erently based on the day of measurement. To investigate these
di�erences, we quantify the stability and periodicity of correlation

between top lists and our Cloud�are metrics on a daily basis (Fig-
ure 3). Jaccard intersection remains temporally stable across all lists
except for Cisco Umbrella, which exhibits weekly periodicity in Jac-
card index. Spearman correlations are periodic and less stable, with
Alexa and Umbrella showing higher accuracy on weekends. This
may be because Alexa is computed primarily from browser exten-
sion data, which is likely less prevalent in corporate environments.
The remaining lists show some degree of periodicity; however, they
are largely consistent day over day. The order of top lists from
most to least well correlated is also largely consistent over time.
However, we see Alexa improve in accuracy, by both intersection
and rank order correlation, in late February. It is unclear why—no
announcements have beenmade about anymethodological change.

6 BIASES IN MISSEDWEBSITES
In the last section, we quanti�ed the accuracy of top lists. Next, we
explore the hypothesis that list inaccuracy is due to, at least partially,
systematic biases in list composition (i.e., errors are not simply
random). Speci�cally, we consider whether lists are biased toward
certain client platforms, client countries, or website categories.

6.1 Google Chrome Telemetry Data
Given the accuracy of CrUX demonstrated in the last section, we
workedwith Chrome to better understand the bias in client platform
and country that other lists exhibit. Chrome speci�cally provided us
with rank-order popularity lists for several client telemetry metrics
that are not publicly accessible through CrUX [8]: (1) initiated
page loads, (2) completed page loads, and (3) total time on sites
aggregated by country and OS platform from February 1–28, 2022.
The public CrUX data used previously in this paper is based on
completed page loads.

We consider 11 countries: 10 countries that the Chrome team
designated as providing high �delity data and geographic diversity
(Brazil, Germany, Egypt, United Kingdom, Indonesia, India, Japan,
Nigeria, the United States, and South Africa), plus China as a com-
parison point for Secrank. We focus on one desktop (Windows)
and one mobile (Android) platform because the Chrome team in-
dicated that these have the largest, most representative Chrome
install base. Note that Chrome mobile telemetry captures tra�c
only from the browser and native Android apps that use Custom
Tabs and WebAPKs, not from most native apps [13]. Also, Chrome
telemetry excludes visits to non-public domains—domains that are
not hyperlinked from public websites or specify that they may not
be crawled per robots.txt [13]. We do not evaluate CrUX against
these additional Chrome-based metrics because they are derived
from the same data source.

We �rst consider the internal consistency of the three client met-
rics from Chrome (Figure 6). We �nd stronger correlation between
Chrome metrics than between Cloud�are even though time and
page and completed page loads are considerably di�erent: Spear-
man correlations between Chrome metrics are strongly correlated
(0.66–0.98). In almost all cases, Jaccard indices are notably higher
than for Cloud�are (0.73–0.86). We note that since our Chrome
lists are aggregated by client country and platform rather than
globally, we compute the Jaccard index and Spearman correlation
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(a) Jaccard by Platform (b) Spearman by Platform

Figure 4: Top List Performance by Platform—We compare top lists to Chrome data broken down by client platform, averaging results
across client countries. Top lists best approximate client behavior sourced from desktop vs. mobile users. However, the delta between both
platforms is small, suggesting that platform alone does explain why top lists poorly approximate client behaviors.
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(b) Cloud�are and CrUX 1M

Figure 5: Magnitude movements between Cloud�are, Alexa, and CrUX—For the set of sites in the Alexa 1M that Cloud�are metrics
(1) and (3) place into the same rank-magnitude bucket, we compute the movement of those sites from their Cloud�are rank-magnitude
bucket (left) to their Alexa rank-magnitude bucket (right). The width of each link is on a log scale. Yellow links indicate o�-by-one rank
magnitudes while red links indicate more drastic mismatches. We �nd that a large fraction of Alexa top-ranked domains are counted in
a lower rank-magnitude bucket by multiple Cloud�are metrics. Results for Majestic, Tranco, Trexa, and Umbrella are very similar. CrUX
exhibits signi�cantly less of a mismatch with Cloud�are rank-magnitude buckets.

between popularity metrics for each country and platform and re-
port average correlations across all (country, platform) pairs; we
are unable to directly compute similarity between global lists. This
process may raise correlations somewhat if it corrects for browsing
behavior di�erences across countries and platforms.

Ethics. The Chrome data that we analyze is subject to several
privacy protections. All data was collected and shared with us
in aggregate form only. We received no data from Google about
individual users or the raw amount of tra�c that any site receives,
and Google did not collect or analyze any additional data for this
study. Instead, Chrome provided us with rank order list of most
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(a) Jaccard Index (b) Spearman Correlation

Figure 6: Intra-Chrome Metric Consistency—We compare
three metrics from Chrome telemetry for measuring popularity:
(1) Completed Pageloads, (2) Initiated Pageloads, (3) Time On Page.
Each value is averaged over all client platforms and countries.

popular websites by country and platform. To prevent inadvertently
deanonymizing users, only websites with above a set threshold of
unique visitors from each country are included; this threshold is not
disclosed, but is set both to protect privacy and to ensure su�cient
samples to be con�dent in the statistical distributions for included
pages [13]. Similar to the public CrUX lists, the Chrome data we
analyze is based on Chrome users who have opted into sharing URLs
with Chrome and have usage statistic reporting enabled. Chrome’s
privacy policy explains in plain language under what circumstances
URLs will be shared, including that data may be used for research
and development, and users can control whether usage statistic
reporting is enabled. No additional data was collected or stored by
Google for the purpose of this study.

6.2 Client Platform Biases
We �rst investigate whether top lists are biased toward tra�c from
speci�c client platforms. To measure the role of client platform in
top list performance, we compare top lists with ranked popularity
data collected from Chrome telemetry on Windows and Android.
Similar to Section 6.1, we compute correlations over (platform–
country) pairs and average results across countries (Figure 4).

Top lists better approximate client behavior on desktop plat-
forms than mobile platforms. This is true across every non-CrUX
list and Cloud�are metric. Jaccard coe�cients range from 0.017—
0.1 for Android clients, less than 0.023—0.15 for Windows clients.
These results are consistent for Spearman’s rank coe�cients, which
range from 0.059—0.21 for Android clients, compared to 0.075—0.35
for Windows clients. In the most severe case, Alexa has Jaccard
Indices for desktop users that are nearly double those of mobile.
Unsurprisingly, given the methodological approach, we see the least
di�erence for Majestic. We note that we do not evaluate CrUX here
because it is based on the same data as we use for the evaluation.
Furthermore, because these results are averaged over per-country
lists rather than compared to global lists, the values in Figure 4 are
not expected to appreciably outperform those in Figure 2; rather,
we focus on the bias shown by the relative values in the heatmap,
and observe that despite this bias, platform alone does not fully
explain why top lists perform so poorly.

Cat. Alexa Majest. Tranco Trexa Umbrel. CrUX Secrank

Gov’t – 5.45 17.62 6.81 2.3 5.74 0.24
News – 1.6 2.87 2.51 0.69 3.93 0.16
Educ. 0.84 – 1.93 1.7 0.67 2.79 0.38
Science 0.87 0.77 1.85 1.66 0.81 1.09 0.41
News – – – – – – –
Comm. 0.75 0.9 1.8 1.6 0.64 2.93 0.27
Bus. 0.75 0.84 1.72 1.5 0.66 1.33 0.19
Gaming 0.7 0.66 1.61 1.37 0.67 3.0 0.38
Kids 0.62 – 1.92 1.63 – 5.41 0.16
Life 0.67 0.68 1.6 1.38 0.53 3.17 0.19
Arts 0.63 – 1.64 – 0.57 2.64 0.14
Health 0.62 – 1.74 1.5 0.6 3.37 0.09
Blog 0.65 0.54 1.3 1.18 0.44 2.46 0.15
Sports 0.62 – 1.84 1.49 0.51 4.19 0.09
Travel 0.55 1.66 2.26 1.7 0.63 3.96 0.12
Shop 0.55 0.74 1.23 1.08 0.43 5.3 0.08
Cars 0.49 – 1.48 1.22 0.5 4.36 0.05
Adult 0.27 0.14 0.46 0.44 0.16 2.83 –
Abuse 0.26 0.15 0.62 0.52 0.41 0.5 0.3
Gambl. 0.22 0.23 0.38 0.36 0.13 1.84 0.08
Parked 0.11 0.03 0.2 0.19 0.15 0.2 0.2

Table 3: Odds ofWebsite Inclusion by Category—We show the
odds that a particular category of website is included by each top
list. Top list has a unique set of categories that it is biased to include,
however, some categories are universally included, such as govern-
ment websites and news websites. Conversely, some categories are
commonly excluded, such as adult or abuse (e.g., spam) websites.
A missing entry means the regression result was not statistically
signi�cant at ? < 0.01 with Bonferroni correction.

6.3 Client Country Biases
Next, we investigate top list biases by country, using the same
Chrome data described in Section 6.1. Because global browsing
behavior is unevenly distributed, there are two plausibly “correct”
results for a globally aggregated popularity list: equally similar to all
countries (weighting tra�c by country of origin to counterbalance
population di�erences), or systematically biased toward countries
with larger user bases (weighting tra�c equally irrespective of
origin country). We observe neither pattern in the data.

Top lists exhibit noticeable and irregular geographic biases (Fig-
ure 7). For example, all top lists poorly represent Japan. Umbrella
is biased toward the US, which makes sense given US-centric cus-
tomer base. Secrank best matches China, though performs relatively
poorly, and does extremely poorly elsewhere—likely due to its Chi-
nese DNS data source. Majestic also best matches the US. Alexa
performs best when compared to the US, China, and sub-Saharan
Africa. Finally, the composite Tranco and Trexa lists inherit the
biases of their inputs.

6.4 Category Modeling
In this section, we examine another potential bias: the type of the
website itself. We label each Cloud�are-managed website using
the domain categorization feature of Cloud�are’s Domain Intel-
ligence API [14], which has been demonstrated to be reasonably
accurate [24]. We identify whether a top list erroneously excludes
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Figure 7: Top List Performance by Country—We compare top lists to Chrome data (Jaccard above, Spearman below) broken down by
client country, averaging results across desktop and mobile platforms. Top lists demonstrate signi�cant geographical bias. All top lists poorly
match Japan. Secrank best matches China, Umbrella and Majestic best match the US, Alexa matches sub-Saharan Africa surprisingly well,
and Tranco and Trexa inherit the biases of their component lists.

a popular website using a simple heuristic: we identify the least
popular domain (⇡;40BC ) in a top list ! that appears in our Cloud-
�are list. We consider a domain ⇡ to be erroneously excluded if it
receives more tra�c volume than ⇡;40BC based on HTTP requests
but does not appear in !. For the scope of this analysis, we evaluate
list inclusion on a single day: February 1, 2022. We restrict our
analyses to consider only the Top 100K domains from Cloud�are,
as inclusion rates signi�cantly decrease at higher thresholds, which
reduces the interpretability of our results.
ModelingWebsite Exclusion. To evaluate the impact that web-
site category has on list exclusion, we perform a simple logistic
regression analysis with website category as an input. For each do-
main in the Cloud�are list, we model the outcome of list exclusion
as a binary outcome—1 if the domain was included by a top list
!, and 0 if the domain was excluded by the top list. As an input
to the regression, we provide the category ⇠ of the domain, repre-
sented by a one-hot encoded vector. We build a regression between
Cloud�are and each top list we study. We report regression results
as odds ratios, with the category in question measured against all
other domains as a control (Table 3). For example, the odds of a
government website being included by the Umbrella top list are
2.3 times that of a non-government website being included by the
Umbrella list. All reported results are statistically signi�cant with
? < 0.01 and a Bonferroni correction of 22 (the number of website
categories we consider).

Each top list is biased towards a di�erent set of categories:
Alexa. Alexa is most biased away from adult (0.27⇥ odds of
inclusion), abuse (0.26⇥), gambling (0.22⇥), and parked domains

(0.11⇥). Adult websites are likely not included because of Alexa’s
data collection methodology, which depends on data collected from
installed browser extensions. Prior research has demonstrated that
users typically visit adult sites in a private browser mode, where
browser extensions are disabled by default [15]. For other categories,
like abuse and gambling, we do not have a clear reason why they
are underrepresented. We note that almost every category appears
to be underrepresented in Alexa because in aggregate, inclusion
rates are relatively low.
Majestic. Majestic skews towards government, news, and travel
websites, for which the odds of inclusion range from 1.6–5.45⇥.
Outside of these categories, almost every other category of website
is underrepresented. The least likely to be included in the Majestic
list are adult websites (0.14⇥) and abuse websites (0.15⇥).
Secrank. The Secrank list has poor odds of inclusion for nearly
every category, with all but two having statistically signi�cant
underrepresentation (0.05–0.41⇥). Intuitively, this implies that the
Secrank list broadly misses many domains from the Cloud�are list,
suggesting widespread underrepresentation of popular domains.
Umbrella. Umbrella skews towards government websites (odds
of inclusion are 2.3⇥), but underrepresents every other category.
Tranco and Trexa. The Tranco and Trexa lists follow similar
inclusion patterns. In particular, we observe statistically signi�cant
di�erences in the odds of inclusion across all but one category in
the Tranco list (News) and all but two in the Trexa list (News and
Arts). Given that both the Tranco and Trexa lists have the second
highest rates of inclusion from the Cloud�are list (57%, 54%), the
odds of inclusion are high in almost every single category. The most
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notable category is Government, for which the odds of inclusion
in Tranco are 17.62 times the odds of a non-Government website
being included. However, Tranco and Trexa both regularly exclude
adult websites and gambling websites, which aligns closely with
Alexa, Majestic, and Umbrella.
CrUX. The CrUX list has the highest rate of inclusion with
Cloud�are (71%), and nearly every category of website has high
inclusion rates. Notably, CrUX is the only top list to also account
for adult websites and gambling websites in their list.
Taken together, our analysis reveals certain categories of websites
(e.g., adult and gambling) are often underrepresented in top lists.
CrUX does not have this pitfall, and it has the best overall odds
of inclusion among top lists. Beyond this, our results show that
while amalgam lists may be an e�ective strategy to prevent against
adversarial manipulation [18], the biases present in their underlying
lists are notmitigated by any one aggregation strategy—for example,
Tranco and Trexa still su�er from underrepresented adult websites,
despite having high rates of inclusion broadly.

7 DISCUSSION AND CONCLUSION
For more than twenty years, the Internet measurement community
has approximated the web using lists of popular websites like the
Alexa Top Million. Recent studies have cast doubt on the accuracy of
such lists and, by proxy, the research results derived from them [27].
In addition, Amazon’s recent deprecation of the Alexa Top Million—
the list used by the vast majority of prior research studies—forces
researchers to choose an alternative. But, despite these concerns, it
has been impossible to directly evaluate the accuracy of top website
lists or to sensibly select a replacement for Alexa without ground
truth data about websites—a daunting task given the distributed
nature of the web.

For better or for worse, the web has become more centralized
over the past decade. A small handful of content providers like
Amazon, Akamai, Cloud�are, and Google now serve a signi�cant
fraction of popular websites and users have gravitated towards
a select few web browsers. This concentration provides us with
a unique new opportunity to evaluate lists of popular websites.
In this paper, we partnered with Cloud�are, the content provider
that serves—by far—the largest fraction of top websites and Google
Chrome, the most popular web browser, to evaluate the accuracy
of lists of top websites.

Even with these industry datasets, the results we �nd are messy
and inconsistent. To start, there is no shared de�nition of web-
site popularity. Each list employs a unique, and often proprietary,
methodology to compute popularity. In many cases, lists are rank-
ing di�erent objects, which range from web origins to DNS names.
Further, it is di�cult to reverse model even simple metrics like page
loads using server requests as seen by a server provider. Despite
these complexities, we �nd several notable conclusions.

Using a set of metrics from Cloud�are that estimate page loads
and unique visitors, we �nd Google Chrome’s recently released
CrUX dataset captures the unordered set of most popular websites
signi�cantly more accurately than other top lists, with correlations
inline with the di�erences we see amongst multiple measures of
popularity derived from the same Cloud�are data. No other top
list enters this range. This, paired with the internal consistency

of Chrome metrics, suggests that Chrome does not simply use a
metric more similar to Cloud�are’s, but rather that their data is
more accurate.

Chrome provides only rank order magnitude buckets. While
initially appearing to be a shortcoming of the CrUX dataset, the lack
of individual site ranks is not an issue for most research studies. We
survey past work that uses top lists and �nd that the vast majority
do not use site ranks, but rather use top lists as an unordered set
of websites to study. As such, the structure of the CrUX dataset
is typically suitable for research use cases. After CrUX, we �nd
that the Umbrella Top Million—a list that measures popular names
rather than websites—next best captures the most popular websites,
but that their methodology may not be accurate enough to capture
the relative popularity of individual sites.

It is di�cult to ascertain exactly why some lists are more accurate
than others, but our work documents that this is not simply due to
random noise. We �nd that there are biases in top lists, but we do
not answer conclusively why these biases arise. Other work [24]
provides potential clues. For example, di�erences in dominant use
cases between mobile and desktop browsers may partially explain
site category bias; we leave it to future work to pursue these leads.
Future work may also be able to combat these biases and to build
more representative sets of websites (e.g., by combining data from
multiple accurate data sources or hardening accurate data sources
against external manipulation).
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