Tracing Your Roots: Exploring the TLS Trust Anchor Ecosystem

Zane Ma
Georgia Institute of Technology

zanema@gatech.edu

jaa2@illinois.edu

Zakir Durumeric

Stanford University
USA
zakir@cs.stanford.edu

ABSTRACT

Secure TLS server authentication depends on reliable trust anchors.
The fault intolerant design of today’s system—where a single com-
promised trust anchor can impersonate nearly all web entities—
necessitates the careful assessment of each trust anchor found in
a root store. In this work, we present a first look at the root store
ecosystem that underlies the accelerating deployment of TLS. Our
broad collection of TLS user agents, libraries, and operating systems
reveals a surprisingly condensed root store ecosystem, with nearly
all user agents ultimately deriving their roots from one of three
root programs: Apple, Microsoft, and NSS. This inverted pyramid
structure further magnifies the importance of judicious root store
management by these foundational root programs.

Our analysis of root store management presents evidence of
NSS’s relative operational agility, transparency, and rigorous in-
clusion policies. Unsurprisingly, all derivative root stores in our
dataset (e.g., Linuxes, Android, NodeJS) draw their roots from NSS.
Despite this solid footing, derivative root stores display lax update
routines and often customize their root stores in questionable ways.
By scrutinizing these practices, we highlight two fundamental ob-
stacles to existing NSS-derived root stores: rigid on-or-off trust and
multi-purpose root stores. Taken together, our study highlights
the concentration of root store trust in TLS server authentication,
exposes questionable root management practices, and proposes
improvements for future TLS root stores.

ACM Reference Format:

Zane Ma, James Austgen, Joshua Mason, Zakir Durumeric, and Michael
Bailey. 2021. Tracing Your Roots: Exploring the TLS Trust Anchor Ecosystem.
In ACM Internet Measurement Conference (IMC 21), November 2—4, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3487552.3487813

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’21, November 2—4, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9129-0/21/11...$15.00
https://doi.org/10.1145/3487552.3487813

James Austgen
University of Illinois at
USA Urbana-Champaign

Joshua Mason
University of Illinois at
Urbana-Champaign
USA
joshm@illinois.edu

Michael Bailey
University of Illinois at
Urbana-Champaign
USA
mdbailey@illinois.edu

1 INTRODUCTION

TLS web server authentication functions through the web public
key infrastructure (PKI). In the Web PKI, clients rely on a set of trust
anchors (also called a root store) to verify web identities (e.g., DNS
names and IP addresses) and their corresponding cryptographic
public keys. Due to the design of the existing Web PKI, each indi-
vidual trust anchor is a single point of widespread failure; a single
compromised trust anchor can maliciously impersonate nearly all
web identities. Thus, the security of the PKI system hinges on judi-
cious trust: carefully deciding what roots to include and exclude
from a root store. In this work, we identify the root stores utilized
by popular TLS clients and how these root stores compare in their
trust anchor decisions.

A wide range of applications rely on the Web PKI for TLS au-
thentication, but it is not immediately obvious which root stores
they utilize. To identify the root store providers for popular web
clients, we manually investigate the top 200 most common user
agent strings seen across a major CDN and definitively collect the
default root stores for more than three-quarters of them. We supple-
ment this data with additional root store providers found in other
popular software, ultimately collecting the root store histories of
thirteen providers. Our dataset corroborates the traditional assump-
tion that many clients rely on the roots provided by the operating
system, but we also find several libraries that provide their own
root stores, such as Mozilla’s NSS, Node]JS, and Java. Ordiantion
analysis of these providers shows that they condense into just four
independent root programs—Apple, Microsoft, Mozilla/NSS, and
Java—that underlie the vast majority of TLS user agents.

Our findings demonstrate that the TLS root store ecosystem is
an inverted pyramid, where hundreds of user agents rely on about
a dozen root store providers that stem from three root programs
(excluding Java since it is not widely used). As a result, each root
program has an outsized effect on a wide range of end users. Given
this reach and the fault-intolerant fragility of root stores, we dili-
gently evaluate each root program to assess their management
practices and placement of trust. We find NSS to have the best
operational hygiene, followed by Apple, and then Microsoft and
Java. With regards to trust decisions, we find that Apple, and Mi-
crosoft especially, place their trust in a wider range of CAs than
NSS/Java. In several cases, Microsoft trusts government operated
“super-CAs” that are not included by other root store programs, and

https://doi.org/10.1145/3487552.3487813
https://doi.org/10.1145/3487552.3487813
https://doi.org/10.1145/3487552.3487813

actively rejected from NSS inclusion. These comparisons suggest
that Microsoft has an especially permissive root store program.
Each root program serves different users and applications, so we
do not expect their root stores to match or operate identically, but
understanding these differences can provide insight into potential
vulnerability exposure.

Possibly due to NSS’s relative transparency, operational hygiene,
and strictness, we find that all derivative root store providers (e.g.,
NodeJS, Linux distributions, Android) base their roots off of NSS.
Although copying NSS simplifies root store management, this sta-
ble foundation does not necessarily imply root store security. We
find that NSS derivatives do a poor job of keeping up-to-date with
NSS, falling behind by almost two years in some instances. Further-
more, we observe poor NSS copying due to a fundamental design
difference between NSS and derivatives: derivative root stores can
only implement on-or-off root trust and cannot match NSS’s ca-
pabilities for partial distrust. This results in messy trust copying,
such as the re-trusting of partially distrusted Symantec roots by
Debian/Ubuntu, amongst others.

Ultimately, our analysis sheds light on the modern TLS root store
ecosystem, highlighting its current inverted pyramid structure,
the operational practices of the foundational root programs, and
existing pain points around derivative root stores. We conclude
with a discussion of the future of the Web PKI, making suggestions
to guide the expansion of root stores to more devices and clients as
TLS deployment continues to grow.

2 BACKGROUND

The Web Public Key Infrastructure (PKI) provides a scalable solu-
tion to TLS authentication by delegating identity verification to a
set of trusted certification authorities (CAs). CAs are third-party
businesses, governments, and non-profit organizations that special-
ize in identity verification of subscribers, which are any entities that
request a CA’s services. CAs generate signed digital certificates
that attest to the binding between a subscriber’s identity (e.g., DNS
name) and cryptographic public key. During TLS authentication,
this attestation is accepted if the CA is trusted by the authenticator.
In this section, we outline the role of CAs, trust anchors, and root
stores, and refer the reader to [87] for a broader overview of TLS.
All user agents that utilize the Web PKI rely on one or more
trusted “root” CAs that comprise its trust anchor store, or root store.
Common expectations for CA behavior, such as secure identity
verification procedures and strict operational security practices
(e.g., hardware-secured cryptographic keys), are codified by the
CA/Browser Forum in its Baseline Requirements (BRs). The BRs
standardize CA requirements, but stop short of prescribing how
root programs should decide which CAs to trust. This role is filled
by the custom CA inclusion and removal policies of each root store
operator. For instance, Mozilla runs a relatively rigorous policy that
requires roots to publicly disclose unconstrained intermediates in
its Common CA Database (CCADB) [99], while other root stores do
not. CAs demonstrate their policy compliance through Certificate
Policies (CP) and Certification Practice Statements (CPS), and many
root stores require regular CA audits to confirm policy adherence.

A CA’s digital identity is a public-key and name mapping, and
root stores typically represent these identities as X.509 digital certifi-
cates. In addition to storing identity, these certificates also contain
constraints on the functionality of a trust anchor. For example, all
X.509 certificates contain a validity period that limit the duration of
aroot CA’s utility. Additionally, the Key Usage (KU) and Extended
Key Usage (EKU) X.509 extensions specify the permitted roles (e.g.,
certificate signature, key agreement) and trust purposes (e.g., TLS
server / client authentication) of the certificate. As suggested by the
presence of EKU, the Web PKI is used for more than just TLS server
authentication. CAs that are used for TLS server authentication
often issue certificates for other common purposes, namely email
signatures (i.e., SMIME) and code signing. The BRs only apply to
publicly-trusted TLS server certificates, and the identity verifica-
tion requirements and procedures for other trust purposes differ. A
root CA that is trusted for one form of identity verification is not
necessarily qualified or trusted for other forms. For this paper, we
focus on TLS server authentication certificates that are primarily
used for HTTPS but can also be used for secure email transport
(STARTTLS).

CAs dictate the constraints found within a certificate, but end
entities such as browsers can also specify their own restrictions.
For instance, Mozilla’s Network Security Services (NSS) and Mi-
crosoft root stores contain additional trust constraints, external to
their trusted root certificates. The BRs only permit CA-specified
EKU trust purposes for intermediate CA certificates, not roots, so
root programs without their own external trust policies have poor
visibility into what their roots are trusted for.

3 ROOT STORE PROVIDERS

The first challenge with understanding the landscape of HTTPS
trust anchor stores is to determine who provides them. Operating
systems provide a system-wide store, but HTTPS libraries and
HTTPS clients can supplant these system roots by shipping their
own root store. In order to determine the providers of root stores
used by TLS clients, we took a two pronged approach: looking
at popular user agents in the wild and investigating well-known
operating systems, TLS libraries, and TLS clients.

As a starting point, we collected the top 200 User Agent HTTP
headers (with bots removed) seen during a 10 minute sample of
traffic from a major CDN on April 7, 2021 around 18:00 UTC. We
were unable to acquire multiple/longer samples, and cannot test the
representativeness of our time period. However, we note that a prior
study [94] found that “broadly speaking, this list [of prevalent UAs]
is stable over time”” Table 1 groups User Agents (i.e., client software)
with operating system, and we use this data as a guide for collecting
root stores in common use on the web. In total, we collected the
root stores for 77% of the top 200 UAs. The 23% of user agents for
which we have unknown or no coverage consist of ChromeOS,
less common browsers (e.g., Yandex, Samsung Internet), custom
applications making API calls, or clients that cannot be identified
by their User Agent header. We exclude Yandex and Chrome on
ChromeOS because the source history is not publicly available.

We supplement the popular user agent dataset by expanding
our data collection process (Appendix A) to consider a total of
nine popular mobile and desktop operating systems, which all

0OS/User Agent # versions Included?
Android
Chrome Mobile 48 yes
Samsung Internet 2 no
Android 3 no
Firefox Mobile 1 yes
Chrome Mobile WebView 1 no
Chrome 1 yes
Windows
Chrome 23 yes
Firefox 7 yes
Electron 6 yes
Opera 4 yes
Edge 4 yes
Yandex Browser 3 no
IE 3 yes
iOS
Mobile Safari 18 yes
WKWebView 4 yes
Chrome Mobile iOS 2 yes
Google 2 no
Mac OS X
Safari 15 yes
Chrome 14 yes
Firefox 2 yes
Apple Mail 1 no
Electron 1 yes
ChromeOS
Chrome 8 no
Linux
Chrome 2 no
Safari 1 no
Firefox 1 yes
Samsung Internet 1 no
Unknown
okhttp 3 no
Unknown 2 no
CryptoAPI 1 no
API Clients 16 no
Total included 154 (77.0%)

Table 1: Major CDN Top 200 User Agents—We collect root
store history for at least 77% of popular clients.

provide a root store for applications running on each platform. We
also examined nineteen widely used TLS libraries and found that
only three (NSS, Node]S, Java Secure Socket Extensions) provide a
root store that application developers may use. The remaining TLS
libraries either default to the base platform/OS root store or are
configurable at build time. Finally, we looked into twelve common
HTTPS clients and web browsers and find that only 360Browser,
Firefox, and Chrome do not rely on system root stores and ship
their own. Table 2 summarizes our final root store dataset, and we
further describe each root store provider below.

NSS/Firefox/Mozilla Mozilla’s Network Security Services (NSS)
is a set of libraries that provide secure client-server communica-
tions. Mozilla develops and uses NSS solely for its Firefox web

browser, Thunderbird email client, and “other Mozilla-related soft-
ware products” [57]. Since 2000, NSS has maintained a trust anchor
store through its certdata. txt file. This file follows the PKCS#11
format and contains a list of two types of elements: certificates
and trust objects. Certificates contain raw certificate data and some
extracted fields. Trust objects contain 1) trust anchor identifiers (i.e.,
issuer name, serial number, and SHA1/MD5 hashes of a certificate)
as well as 2) trust details, which include the trust purpose (i.e., server
authentication HTTPS, email protection S/MIME, code signing) and
level (i.e., trusted, needs verification, or distrusted). This trust con-
text is solely determined by NSS maintainers through independent
due diligence, such as audit review and discussion with the PKI
community.

Unfortunately, not all of Mozilla’s trust anchor policies are fully
encapsulated within certdata. txt, due to their complexity and
technical considerations [33]. For instance, special constraints for
the Turkish government CA are implemented in C / C++ code.
Also the distrust of Symantec was partially implemented in code to
whitelist subordinate CAs of Symantec that were independently op-
erated. Mozilla also manages EV trust outside of certdata. txt [33].
As discussed in Section 3.1, we do not account for these nuanced
modifications when performing broadly-scoped analysis, but we
do consider them when examining specific roots.

NSS is the most well maintained trust anchor store for HTTPS
(and TLS server auth) by several measures. First, NSS has the most
transparent root inclusion / removal process. NSS abides by the
Mozilla Root Store policy, which requires maintainers to work with
the community [50, 51] to solicit feedback on all root CA inclu-
sion/removal proposals and on policy improvements for the Mozilla
Root Store. NSS also monitors CA issues through its public bug
tracking system and presents evidence for actions taken against
problematic CAs [36, 39, 40]. Second, NSS holds CAs to a relatively
high standard through its strict root store policy. CA issues fre-
quently first surface through NSS bug reports. As a result, NSS is
also the most responsive root store, often mitigating CA incidents
ahead of other root stores. For instance, Mozilla lead the commu-
nity discussion of DarkMatter’s trustworthiness as a CA [108], and
uncovered WoSign’s surreptitious ownership of StartCom [100].
We refer to NSS/Mozilla interchangeably in this manuscript.

Microsoft Microsoft updates the root certificates for its Win-
dows operating systems via Automatic Root Updates (partially sup-
ported as early as Windows XP SP2 [76]) through which Microsoft
ships authrootstl. cab. This file decompresses to authroot.stl
and contains a list of trust anchors and their Microsoft-specific OIDs,
which specify restrictions on each trust anchor. These restrictions
define the purposes for which a certificate is trusted or distrusted,
as well as other more nuanced trust, as discussed later in Section 5.3.
Full certificates are not included in authroot.stl, but they can
be downloaded from Microsoft by SHA1 hash through a separate
URL. This study uses an open-source archive of authroot.stl and
associated certificates [107].

Apple Since at least 2005 [75], Apple has managed its own root
certificate program to support products such as “Safari, Mail.app,
and iChat” More recently, this root store has supported both macOS
and iOS product lines. Apple stores trust anchors in keychain files
that can contain a wide range of credentials (e.g., passwords, private

Root store From To #8S #Uniq Data source Details

Alpine 2019-03 2021-04 42 7 docker [46] /etc/ssl/cert.pemor /etc/ssl/ca-certificates.crt

AmazonLinux 2016-10 2021-03 43 15 docker [47] ca-trust/extracted/pem/tls-ca-bundle.pem aggregate file of root certs
Android 2016-08 2020-12 14 7 source code [26] List of root certificate files.

Apple 2002-08 2021-02 109 43 source code [69] Both macOS and iOS. certificates/roots directory of files

Debian 2005-05 2021-01 39 29 source code [45] /etc/ssl/certs and /usr/share/ca-certificates, directory of cert files
Java 2018-03 2021-02 7 7 source code [62] make/data/cacerts JKS file that has migrated over time

Microsoft 2006-12 2021-03 86 70 update file [107] authroot.stl updates roots, trust purpose, addl. constraints

NodeJS 2015-01 2021-04 16 11 source code [59] src/node_root_certs.h list of certificates

NSS 2000-10 2021-05 225 63 source code [58] certdata. txt stores roots, trust purpose, additional constraints

Ubuntu 2003-10 2021-01 338 29 source code [73] /etc/ssl/certs and /usr/share/ca-certificates, directory of cert files

Table 2: Dataset—Root store history of 619 total snapshots (SS) for ten root providers: seven OS, three library.

keys, etc.) in addition to root certificates. While recent versions of
the keychain format are capable of specifying specific key usages
(kSecTrustSettingsKeyUsage), specific usage restrictions are not
provided by default. We collect roots from Apple’s open source
repository [69].

Linux distributions Most Linux distributions derive their trust
anchor stores from NSS. However, rather than use NSS’s custom
certdata. txt file, they express their trust through a list of X.509
certificates stored in a menagerie of directories. This format for
trust anchor stores omits the trust purposes that are specified by
NSS/Microsoft. To account for this discrepancy, recent versions
of AmazonLinux, Fedora, and others provide additional purpose-
specific root stores! that distinguish between TLS server authenti-
cation, S/MIME email signing, and code signing use cases. For this
study, we only consider TLS server authentication certificates when
the distinction is available. Although they rely on NSS, Linux trust
anchor stores are updated manually and may make custom modifi-
cations to certdata. txt. To account for this possibility, we either
run the build process to extract accurate root store information, or
we collect data from a pre-built, officially distributed Docker image.

Android Android maintains its own trust anchor store [26]. It
consists of three root directories: general purpose, Google Services,
and Wi-Fi Alliance (WFA). We collect the general purpose roots
only. Although the Android root store repository has been active
since 2008, Android version tags have only been applied since 2015,
so we only have definitive snapshots after that date.

Chrome Chrome installations traditionally inherited the oper-
ating system trust store (except on ChromeOS or for EV) with its
own specialized control. For example, to protect its users against
the distrusted CA Symantec, Chrome implemented bespoke CA dis-
trust policies across all platforms besides i0S2. In late 2020, Google
announced their transition to its own TLS root store [41] to provide
a consistent experience for all of its users. However, as of May 2021,
the transition is still in-progress, and we exclude it from this study.

Java Oracle, the developer of Java, operates a root program [52]
to provide Java developers with a default set of root CAs for TLS
server authentication, email signing, and code signing. We measure
these trusted CAs through OpenJDK’s source repository. These CA

!Whether applications utilize these purpose-based roots is beyond the scope of this
study.
2 Apple prohibits custom root policies on iOS.

certificates are typically stored in a Java-specific JKS file, which we
parse using Java’s keytool utility. Java’s default root store does
not include additional trust contexts or restrictions.

NodeJS Node]S provides a compile flag to trust system root
stores, but by default, it ships a file that contains trusted root cer-
tificates.

Opera Opera maintained its own root store until 2013 [66], when
it switched to adopting NSS’s root store and Chrome’s EV store.
Opera does not provide its software open source, so we do not
include it in our dataset. Opera migrated to Chromium in 2013 and
now utilizes system root stores.

Electron Electron is an application development framework used
by applications such as Slack, Discord, Skype, etc. that combines
Node]S and Chromium to allow developers to build applications
using only web technologies: JavaScript, HTML, and CSS. Depend-
ing on the networking library used [79], Electron can rely on either
Node’s root store, or the system root store, which Chromium de-
faults to.

3.1 Data Collection & Limitations

The root store providers described above manage and publicly
release their trust anchors in different formats. We parse these
formats and consolidate them into a single database. For each root
store provider, we store snapshots, which represent a root store at a
single point in time. Each snapshot is a collection of trust entries
that include a certificate along with any additional trust/distrust
constraints (e.g., as provided by NSS and Microsoft). This study only
examines root stores, and does not evaluate certificate chains or
intermediate certificates, which are complicated by cross-signing,
CRL/OCSP certificate revocation, and other client-specific methods
such as Mozilla’s OneCRL and Chrome’s CRLSets.

Our dataset and methodology have a few limitations. First, the
dates for each root store snapshot do not always reflect the earliest
release date of each root store; instead, they should be viewed
as approximations. We take a best-effort approach to collecting
the root stores for a wide range of OSes and TLS software, and
as as result, our data collection represents different stages of root
store deployment. For some root store providers, we can collect

3Notable exceptions with no reliable root history include ChromeOS and Fedora/-
CentOS. The latter releases Docker images, but with inconsistent timestamping and
versioning.

the source code repositories, which provide release tags that are
a proxy for release dates. For others, we can only collect pre-built
Docker images or root store update files, which may not correspond
perfectly with actual release dates. In order to compare the root
store dates derived from different means, we treat snapshot dates as
a rough approximation, and only make coarse-grained comparisons
between them, on the order of months or years.

Second, the data we collect represents default values and may not
reflect customized root store deployments. While no prior studies
have comprehensively measured root store deployments in the wild,
some have suggested that root stores may be altered by cellular
carriers [109] and locally installed AV / monitoring software [90].
We recognize that our dataset represents only the default root stores
provided by popular OSes and TLS software. However, we have
not discovered any reports of manual trust anchor removal from
default root stores*. This fact, coupled with the fault-intolerant
nature of the TLS PKI means that the results from our study are
likely a lower bound on real-world deployments.

Third, certificate chain validation is complex, and understanding
root stores is only part of the overall process that involves chain-
building and bespoke trust restrictions embedded in code. A root
certificate’s inclusion in a trust anchor store does not guarantee
that it is trusted. From our experience looking through TLS library
code, additional modifications to root store trust typically address
exceptional cases, rather than commonplace scenarios. When we
discuss specific root store inclusions/removals in Sections 5 and 6,
we make a best-effort attempt to account for any trust logic exter-
nal to the root store itself. For example, Apple utilizes a custom
revocation mechanism that downloads over-the-air updates from
valid.apple.com, and we note when this extends to questionable
roots.

4 ROOT STORE FAMILIES

Although OSes and some libraries/clients ship their own root stores,
they are not necessarily independent. Properly managing a root
store takes significant, sustained effort, and not all TLS software
developers have the capacity to manage a root store. Instead, some
root store providers derive their roots from other sources, making
identical copies or bespoke modifications. For instance, many Linux
distributions rely on NSS as the foundation of their root stores.
Unfortunately, not all root stores are open source and can be traced
directly to an independent source (e.g., NSS) through documenta-
tion. Some of our data sources are pre-built software (e.g., docker
images of AmazonLinux / Alpine), which lack transparent root
store provenance. To develop a general mechanism for determining
the interrelatedness/lineage of root stores, we take inspiration from
community ecology. We perform ordination analysis to visualize
the relationship of communities (collection of trust anchors in a
root store) across different sites (OS/library/client).

We collect root store histories and perform multidimensional
scaling (MDS) to cluster root store providers based on the pairwise
Jaccard distance between each root store community over time.
MDS is a dimensionality reduction technique where the lower di-
mensional representation preserves intra-object distances as well

4Chrome/Firefox apply their own restrictions on top of root stores, but do not modify
them.

as possible. We use the stress majorization variant of metric MDS
as implemented by Python’s sklearn library [104].

From Figure 1, we can see four clusters emerge from the root
store providers in our dataset. These correspond (from left to right)
with Microsoft, NSS/Linux/Node]JS, Apple, and Java. Each cluster
reflects a family of root providers that rely on a single indepen-
dent root program. The clusters are disjoint and do not overlap
(excluding three Apple and one Java outlier described below), which
indicates that as each root store family has evolved, they have not
converged or diverged with other root programs. Only the NSS
cluster contains derivative root stores (Android, Linux distributions,
and Node]S) that copy the NSS root store. However, we also ob-
serve derivative snapshots that do not completely overlap with
NSS snapshots. This suggests not all NSS derivatives make perfect
copies; some make custom modifications, which we explore further
in Section 6.

We observed four outliers in our cluster analysis, all located be-
tween the NSS and Microsoft clusters. These outliers all occur when
substantial changes occur before and/or after a given snapshot. For
example, one Java outlier from August 2018 occurs due to the re-
moval of 9 roots (3 of which were unique to Java), and the addition
of 21 roots, which is a total of 30 (37.5%) changed certificates be-
tween relatively small Java snapshots. The subsequent Java version
removed 6 roots and added 2 new roots. Similar incidents occur
for Apple’s October 2011 snapshot (10 changed roots), February
2014 snapshot (67 changed roots), and September 2018 snapshot (19
changed roots). Due to the lack of root program transparency, we
can only examine what roots changed and try to infer why these
large changes occurred. For example, in the most prominent outlier
(Apple February 2014) we see 9 root removals, and the addition of
a large number of diverse CAs after nearly one-and-a-half years of
Apple root store stagnation. This outlier is either a lapse in Apple’s
open-source repository data, or an intentional delayed update in
one large batch.

The outliers are also exaggerated by their visual location in the
MDS plot. Unfortunately, the high dimensionality (243 dimensions)
of pairwise snapshot distances—the reason we use MDS—impedes
us from definitively explaining the location of the outliers between
Microsoft and NSS in two dimensional space. Instead, we provide
an intuitive rationale: these large deviation outliers are sufficiently
distanced from other Java/Apple snapshots that the large num-
ber of Microsoft/NSS-like snapshots causes MDS to prioritize the
preservation of these high-volume long range interactions over the
preservation of fewer, but closer interactions with Apple snapshots.
Put another way, placing the Apple outliers closer to Apple (i.e.,
between NSS and Apple) would misrepresent the distance between
the outliers and all NSS-like snapshots and all Microsoft snapshots,
which account for 88% of all snapshots.

To understand the utilization of root stores in the wild, we traced
the top 200 user agents to their root store family and found that
NSS (34%), Apple (23%), and Windows (20%) together account for
a majority of the user agents. Java is not linked to any of the top
user agents. As shown in Figure 2, the root store ecosystem is an
inverted pyramid, with a diversity of user agents relying on a cen-
tralized foundation of three root programs. This structure inflates
the importance of CA trust decisions made by each foundational
root program, which we examine below.

€ Nss ® Android * Alpine X Debian ® Java
Hl Apple 4+ Microsoft A Ubuntu ® AmazonLinux <4 NodeJS

2021
0.6 1 NSS
0.4 A
Java
Apple
0.2 A P ¢ 4
: ’ :
0.01 * ! ° a
H e .% F)
k4 o o E
. 3
—0.21 - e} [
A\ ¢ i
x X =
—0.4 & n " ‘x
) » X
Microsoft 'S a
-0.6 n = =
T T T T T T 2011
-0.4 -0.2 0.0 0.2 0.4 0.6

Figure 1: Root Store Similarity—Performing MDS on the Jaccard distance between root store providers from 2011-2021 illustrates
four distinct clusters of roots. From left to right: Microsoft, NSS-like, Apple, Java.

User Agents

r
1

! Libraries / Frameworks

NSS | |Electron| E

Root Store
Providers

A\ A
- i0s | | Android

| Amazon Linux |

Root Store — i *.
Programs > Mlcrosoft| |App|e| | Mozilla | | Java |<——J

Figure 2: Root Store Ecosystem—The TLS root store ecosystem is an inverted pyramid, with a majority of clients trusting one of
four root families.

5 COMPARING ROOT STORES In doing so, we aim to better understand the operational behavior
In this section, we evaluate the four independent root store pro- of each root store and gain insight into their observed differences.
grams used for TLS server authentication: Apple, Java, Microsoft,
and NSS. We compare their security-relevant hygiene, response to
major CA distrust events, and investigate differences in CA trust.

Root store Avg. Size Avg.Expired MD5 1024-bit RSA

Apple 152.9 2.9 2016-09 2015-09
Java 89.4 1.3 2019-02 2021-02
Microsoft 246.6 9.9 2018-03 2017-09
NSS 121.8 1.2 2016-02 2015-10

Table 3: Root store hygiene—The average number of total
and expired roots in each root store snapshot and removal
dates for trusted MD5/1024-bit RSA certificates.

5.1 Root store management

As a proxy for responsible root store management, we examine
three metrics (Table 3): removal of roots with MD5-based signatures,
removal of roots with 1024-bit RSA keys, and removal of expired
root certificates. Apple and NSS were the most proactive in purging
1024-bit RSA and MD5 certificates, in 2015 and 2016, while Microsoft
took 2 additional years, and Java even longer. On the other hand,
NSS and Java have fewer expired roots present in each root store
update than Apple and especially Microsoft, which averages nearly
10 expired roots. Microsoft does manage a larger root store, but
this is not proportional to the increased expirations. Our results
suggest that NSS exhibits the best root store hygiene, followed by
Apple, and then Java/Microsoft.

5.2 Exclusive Differences

To better quantify the differences between each root store family,
we characterize the root CAs that are unique to each. Appendix B
displays the unique, most recently trusted roots for each root store
that have never been trusted for TLS server authentication by any
of the other independent root programs. For each root, we look for
an NSS inclusion request as an additional data source about a given
root and its reason for requested inclusion. We also identify the CA
operator for each root by examining CCADB and the certificate
itself. The unique roots for each store are described below.

NSS The only NSS root not trusted by other root programs is a
newly included Microsec root that uses elliptic curve cryptography
(ECC). This exclusive root does not indicate NSS-only trust in Mi-
crosec; rather, the new root accompanies an existing Microsec root
that is already trusted by NSS, Apple, and Microsoft.

Java Java operates a relatively small root store that includes
substantially fewer roots than the other three root programs. No
Java-exclusive root trust is observed.

Apple The thirteen Apple-exclusive roots can be categorized
into three broad categories. First, six roots are trusted by Microsoft
or NSS, but only for email. Apple has the technical mechanisms to
restrict the trust purposes for each root, but it does not appear to
provide default policies that specify which roots should be used for
which purposes. Second, five roots are controlled by Apple’s CA
and utilized primarily for Apple specific services, such as FairPlay
and Developer ID code signing. This is an expected divergence
in trust from other root programs since they do not participate
in proprietary Apple software and protocols. Finally, we discover
two roots that are actively distrusted by either Microsoft or NSS.
Apple’s trust in the Certipost root is likely benign, since the CA

requested revocation in NSS “solely because they no longer issue
SSL/TLS server certificates.” Apple’s inclusion of a Government of
Venezuela root is more questionable. This root was rejected from
NSS due to the CA’s position as a super-CA [71] that acts as a trust-
bridge to large numbers of independent subordinate CAs, which
each have the capability to issue trusted certificates for any TLS
server identity®. One such subordinate CA, PROCERT, gained entry
into NSS in 2010, but was subsequently removed after repeated
transgressions [38]. This issuer was also trusted by Microsoft, but
only for email, until it was blacklisted in 2020. Apple’s custom
revocation system has blocked this root, but its inclusion in the
set of shipped trust anchors presents an opportunity to clean up
untrusted roots.

Microsoft Microsoft contains 30 exclusive root certificates. Eleven
of these roots attempted and failed the NSS inclusion process, either

due to NSS rejection (7 roots) or CA abandonment (4 roots) after

critical review. Three of these roots belong to national governments

(Brazil, Korea, Tunisia), and two out of three were rejected from

NSS due to secret or insufficiently disclosed subCAs. Worryingly,

Microsoft also trusts a unique root belonging to AC Camerfirma,

which was removed from NSS in May 2021 due to a long-running

list of misissuances. Microsoft’s inclusion of these roots indicates a

lower standard for trust in root CAs. The remaining 19 Microsoft-
exclusive roots reflect a more innocuous collection of CAs with

ongoing NSS inclusion evaluation (6 roots), recently accepted in NSS

(3 roots), trusted by Apple/NSS through cross-signing (2 roots), min-
imal Certificate Transparency presence (6 roots), a WiFi Alliance

root for automatic WiFi roaming, and a Government of Finland

root. For more details, see Appendix B.

Takeaways Root programs serve different applications and users,
and thus, their root CA trust decisions will likely differ. By examin-
ing the exclusive differences between root programs, we highlight
some of their major policy distinctions. Microsoft appears to have a
stronger tolerance for national government super-CAs, while Apple
utilizes its root program to manage roots for TLS server authentica-
tion, email signing, and its own proprietary services. Future work
can determine the security consequences of these uniquely trusted
roots and evaluate the overall performance (scale and security, see
Section 7) of each root program.

5.3 Trusting NSS removals

Another measure of a root store’s responsible management is its
agility and responsiveness to root CA incidents. Since NSS provides
the only transparent mechanism for CA issue tracking, we catalog
all NSS removals after 2010 , track the Bugzilla bug report, and
group the issue into one of three severities: low, medium, high.
Low severity issues consist of routine removal of expired roots or
removal of roots at the request of the CA, typically due to cessation
of operation. Medium severity removals are driven by Mozilla due
to non-urgent security concerns. High severity indicates a Mozilla-
prompted removal due to urgent security concerns. These high and
medium severity removals are shown in Appendix C. Although

SSuper-CAs are not prohibited, but NSS requires sub-CAs to be audited and accounted
for essentially as a stand-alone CA.

Root store # Certs Trusted until Lag (days) Root store # Certs Trusted until Lag (days)

DigiNotar [101] 2011-10-06 WoSign [113] 2017-11-14
Microsoft 1 2011-08-30 -37 Debian/Ubuntu 4 2017-07-17 -120
Apple 1 2011-10-12 6 Microsoft 4 2017-09-22 -53
Debian/Ubuntu 1 2011-10-22 16 Android 4 2017-12-05 21

CNNIC [78] 2017-07-27 ZMEJS ' 4 2018-04-24 161
Apple 9 2015-06-30 758 mazonLinux 4 2019-02-18 461
Android 1 2017-12-05 131 PSPProcert [38] 2017-11-14
Debian/Ubuntu 2 2018-04-09 256 Debian/Ubuntu 1 2018-04-09 146
NodeJS 2 2018-04-24 271 NodeJS 1 2018-04-24 161
AmazonLinux 2 2019-02-18 571 AmazonLinux 1 2019-02-18 461
Microsoft 2 2020-02-26 944 Certinomis [37] 2019-07-05

StartCom [113] 2017-11-14 NodeJS 1 2019-10-22 109
Debian/Ubuntu 3 2017-07-17 -120 Alpine 1 2020-03-23 262
Microsoft 2 2017-09-22 -53 Debian/Ubuntu 1 2020-06-01 332
Android 3 2017-12-05 21 Android 1 2020-09-07 430
NodeJS 3 2018-04-24 161 AmazonLinux 1 2021-03-26 630
AmazonLinux 3 2019-02-18 461 Apple 1 2021-01-01* 577
Apple 3 1 root still trusted 1,175+ Microsoft 1 Still trusted 607+

“Revoked via valid.apple.com at unknown date.

Table 4: High severity removals—Comparison of root store responses to high severity NSS removals.

Mozilla provides a Removed CA Report [64], this data misses 92 re-
movals (mostly due to expiration or CA removal request) found in
our manual analysis. It also includes two incomplete “removals”,
where a CA is distrusted for email/code signing but remains trusted
for TLS, that our dataset does not capture. We have notified Mozilla
of this discrepancy.

Table 4 shows the responsiveness of different root stores to high-
severity removals. We do not include medium and low severity
removals, since root store inclusion / removal decisions are highly
contextual to different root stores, and we do not expect all root
stores to respond to lower severity removals. We do not discuss
all trust actions (e.g., revocations, cross-signing, etc.) for each inci-
dent, only examining the relevant root store details, and provide
references to more detailed descriptions.

Diginotar In 2011, attackers gained access to DigiNotar private
keys and forged trusted certificates for high-profile websites [82],
leading to the most serious PKI security exposure of the last decade.
Microsoft, Apple, and Mozilla swiftly removed DigiNotar’s root cer-
tificate from their root stores. The observed differences in removal
time reflect the nature of our data sources: we detect immediate
Microsoft updates, but only detect removal from Apple/NSS in
the next published root store snapshot. In reality, Mozilla pushed
an update on August 29, 2011 [102], and Apple followed suit on
September 9 [77]. Although the up-to-the-hour response delay in
such incidents is important, our dataset lacks the resolution (see
Section 3.1) to provide more fine-grained analysis.

CNNIC In 2015, Google discovered a Mideast Communication
Systems (MCS) intermediate issued by China Internet Network In-
formation Center (CNNIC) issuing forged TLS certificates. Beyond
the questionable ethics of the incident, the intermediate certificate’s
private keys were installed on a firewall device, exposing it to poten-
tial compromise. In response to this situation, Chrome, Mozilla, and

Microsoft immediately revoked the MCS intermediate certificate,
and Mozilla implemented partial distrust of CNNIC roots in code,
only trusting certificates issued before April 1, 2015 [42]. Apple
took an alternate approach—they removed the CNNIC root in 2015,
significantly before other root programs, but whitelisted 1,429 leaf
certificates [1]. This accounts for Apple’s preemptive removal of
CNNIC roots. Microsoft took the most permissive approach and
continued to trust CNNIC roots until 2020.

StartCom / WoSign In 2016, Mozilla discovered that the CA
WoSign was secretly backdating SSL certificates to circumvent
Mozilla’s deadline for halting SHA1 certificate issuance [113]. Fur-
ther, Mozilla discovered that WoSign had stealthily acquired an-
other CA StartCom and found evidence that StartCom was utilizing
WoSign’s CA infrastructure. In response, Mozilla (and Chrome)
implemented code changes to partially distrust WoSign/StartCom
certificates in late 2016, eventually removing the seven roots in
2017. Microsoft only began to partially distrust StartCom / WoSign
nearly a year later. Apple never included WoSign roots directly, but
revoked their trusted cross-signed intermediates. Surprisingly, Ap-
ple still trusts one of the three StartCom roots®, despite knowledge
of WoSign ownership and evidence of shared issuance.

Procert Procert was never included in Apple, Microsoft, or Java
root stores, and not subject to removal.

Certinomis Amongst other transgressions, Certinomis cross-
signed a StartCom root after StartCom had been distrusted, effec-
tively creating a new valid trust path for StartCom. Furthermore,
Certinomis delayed disclosure of these cross-signs by 111 days. Ap-
ple has revoked this root but has not removed it, while Microsoft
continues to trust this root certificate.

6Two StartCom roots were revoked via valid.apple.com, but not removed.

Takeaways Although root programs make independent root trust
decisions based on their own contexts, we expect them to remove
trust in high severity root CA removals. We observe a range of dif-
ferent response times, response mechanisms (e.g., remove root and
whitelist leaves, revoke root, partially distrust root, etc.), and even
a lack of response for some root programs. The heterogeneity of re-
sponses suggests room for improvements such as the convergence
of trust mechanisms or more prompt removal procedures.

6 NSS DERIVATIVES

In NSS documentation, Mozilla states: “Mozilla does not promise to
take into account the needs of other users of its root store when mak-
ing such [CA] decisions.. Therefore, anyone considering bundling
Mozilla’s root store with other software needs to...maintain security
for their users by carefully observing Mozilla’s actions and taking
appropriate steps of their own” [57]. Despite the prevalence of NSS-
derivative root stores, Mozilla’s root store is explicitly not intended
to be a one-size-fits-all solution for TLS authentication trust. In this
section, we seek to understand the root management practices of
NSS derivatives and how they influence overall security. We first
examine the frequency and delay of updates to understand the risks
that different NSS derivatives expose their users to. We then look at
the fidelity with which root stores copy NSS, including the degree
to which trust purpose restrictions are applied. We ultimately detail
the custom modifications that individual root store providers make
to best serve their users.

6.1 Update Dynamics

To understand the update dynamics of NSS derivatives, we first
need to link specific derivative root store snapshots to the NSS
version that they copy. Because NSS derivatives don’t always make
exact copies of the NSS root stores, we cannot look for exact root
store matches. Instead, we use Jaccard set distance and find the
closest NSS version match for each derivative root store snapshot.
Figure 3 depicts the evolution of NSS and its derivatives over time,
only including substantial versions that introduce changes to TLS
trusted roots. Because software development often runs in parallel
(e.g., maintenance support for v1, and new development for v2), we
only consider mainline versions of each derivative that reflect the
highest version at a given point in time.

To quantify derivative staleness, we integrate the area between
NSS and each NSS derivative root store. This yields a “substantial
version-days” measure where versions are not sequential. We then
normalize these version-days over time to determine the average
substantial version staleness for each root store. The data suggests
that Alpine Linux, which has the shortest and most recent data
collection range, adheres closest to NSS updates. On the other hand,
Amazon Linux exhibits an average staleness of more than four
substantial versions. Furthermore, Amazon Linux and Android are
always stale—even when they update, the updated root store is
already several months behind. This hints at prolonged deploy-
ment cycles that exceed NSS’s relatively frequent updates. Each
tick in Figure 3 represents a mainline version update for each deriv-
ative, which suggests that some derivative version updates ignore
potential NSS updates, especially for Amazon Linux and Alpine.

6.2 Derivative Differences

Figure 4 depicts the root store differences between NSS and NSS
derivatives (mainline versions) over time. We find that all deriva-
tives in our dataset make bespoke modifications to the NSS root
store, and we categorize and describe the reasons for these changes
below.

Symantec distrust In addition to poor update adherence to
NSS’s root store, one shortcoming of NSS derivatives is their trust
store design, which lacks a mechanism for external restrictions
on root certificates. Such a mechanism could provide the ability to
trust roots for specific purposes (e.g., TLS server auth, email signing,
code signing) or provide gradual distrust, rather than a single on-
or-off toggle. To present the practical implications of these issues,
we look at the distrust of Symantec, which required nuanced trust
mechanisms to handle correctly. Symantec’s distrust also amplified
existing pain points due to its scope—Symantec was the largest CA
by issuance volume at the time of its distrust.

Beginning in late 2018, Firefox, independent of NSS, implemented
a gradual distrust of Symantec by adding custom validation code [80]
to distrust subscriber certificates issued after a certain date. In
2020 [72], NSS version 53 implemented partial distrust of twelve
Symantec (now owned by DigiCert) roots through the new restric-
tion server-distrust-after in certdata.txt. This had the effect of
partitioning Symantec subscriber certificates into two parts: cer-
tificates that were still trusted until expiration, and certificates
that were no longer trusted. However, none of the NSS derivatives
had such a mechanism and were forced to choose between pre-
maturely removing all trust in Symantec roots, or retaining full
trust in Symantec roots. From our dataset, Alpine and Android
have not yet upgraded beyond NSS version 48 and have postponed
Symantec distrust. Node]S skipped the Symantec distrust update in
NSS version 53 and has continued to apply subsequent NSS updates.
Unfortunately, version 53 also included the immediate removal of
two other roots: TWCA due to Mozilla policy violations and SK ID
Solutions due to CA request. These roots are preserved in Node]JS.

Ubuntu/Debian took the alternate approach and—just a few days
after NSS implemented partial distrust in version 53—removed
the Symantec roots. Surprisingly, they did not apply all changes
introduced in version 53, and only removed eleven out of twelve
Symantec roots, curiously retaining GeoTrust Universal CA 2 [32].
Unfortunately, this premature full distrust led to so many user
complaints [31] that Debian re-added Symantec distrusted roots.
This incident not only broke applications using the system root
store for TLS server authentication, it also broke (and provided
anecdotal evidence of) applications that relied on these roots for
code-signing and timestamping purposes, such as Microsoft’s .NET
package manager NuGet [88]. This is a clear example of root store
misuse, since the source of Debian/Ubuntu’s root store is NSS,
which only trusts CAs for TLS auth and email signing purposes.
Further, Ubuntu/Debian now only include NSS roots that are trusted
for TLS authentication (see Email signing below).

Non-NSS roots Ubuntu, Debian, and Amazon Linux include
roots that have never been in NSS. Amazon Linux includes a single
non-NSS root (3f9f27d: Thawte Premium Server CA) that it trusts
from October 2016 until December 2020, just before its expiry. This
root is part of the Thawte CA (acquired by Symantec, then DigiCert),

NSS

Alpine (0.73 versions behind)
Debian/Ubuntu (1.96 versions behind)
NodeJS (2.1 versions behind)

Android (3.22 versions behind)
AmazonLinux (4.83 versions behind)

w

Ftittl

NSS version

ww

EEEWEWNWWWNWWWWWWWWWWWWWWWWW WL
OONLPORNHNINPCWWWWWARRRRRULILILIOOW O
WHAWORWRFNUIONFNNAUTNOOFWUIOI0W A NOOWR

W ww - w

2015 2016 2017

2018 2019 2020 2021

Date

Figure 3: NSS derivative staleness—No derivative root stores match NSS’s update regularity. Alpine Linux maintains closest
parity to NSS, while AmazonLinux, on average, lags more than four substantial versions behind.

10 =
* o< 153
0 o

. Added Roots T T T T T T
B8 Removed Roots 20 X >
% z
Sources of Difference 0 o 3
0.0 =}

% Symantec Distrust ; ; ; . . .
X Non-NSS Roots 0 I g
o, =
X Email Signing -5 3 » S

#* Custom Trust - - I - -

ustom
) 2] m K g
0 &
_3 -)
T T T T T T U
&
20 - * S
=)
* IS
. — g
0 B3 <3 §
T T T T T T T T T T c
2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Figure 4: NSS derivative diffs—The number of added/removed root certificates for each NSS derivative indicates that all deviate

from strict NSS adherence.

which was included in NSS through other roots, and does not alter
the CA makeup of the Amazon Linux root store. Ubuntu/Debian,
on the other hand, trusted a total of 19 non-NSS roots, starting
from its first snapshot in 2005 and up until 2015. These roots belong
to a variety of organizations: the Brazilian National Institute of
Information Technology (1), Debian (2), Government of France
DCSSI (1), TP Internet Sp. (9), Software in the Public Interest (3), and
CAcert(3). Of these CAs, only DCSSI has ever had a root included

in NSS. While we cannot trace the inclusion reasons for all these
historic roots, we highlight a few interesting cases. The Debian
and Software in the Public Interest roots were included to support
Debian-specific infrastructure. CAcert, a distributed community
CA, was rejected from NSS [35] and other Linux distributions [65]
for lack of audits. These practices are a significant departure from
NSS inclusion policies and potentially put Ubuntu/Debian users at
greater risk.

Email signing One of the fundamental differences between
NSS and its derivatives is NSS’s ability to specify trust purposes
for each root, as well as gradual distrust. Unfortunately, due to
their trust store format (single file/directory of root certificates for
all purposes), NSS derivatives conflate CAs trusted for TLS with
CAs trusted for code signing or email signatures, even though the
processes and policies and trust decisions for the three should vary
substantially. To quantify a lower bound on the issue, we look
at all NSS certificates that have never been trusted for TLS and
find the derivative root stores that misplace TLS trust in those
certificates. We find that Debian/Ubuntu (19 roots) and Alpine (4
roots) all express TLS trust in CA certificates that have never been
trusted by NSS for TLS. While Debian/Ubuntu have not trusted such
certificates since 2016, Alpine Linux trusted several until 2020. More
broadly, we can see that both Debian/Ubuntu in 2017 and Alpine
in 2020 shifted from including both TLS server authentication and
email signing NSS roots to just include TLS roots.

Customized trust Several derivatives perform customized trust
removals. Android never included PSPProcert, which was later
removed from NSS, and also preemptively removed the problematic
CNNIC root. Both Android and Ubuntu/Debian manually removed
WoSign roots, without updating to the latest NSS version which had
already removed them. Similarly, Alpine Linux manually removed
trust in an expired AddTrust root without updating its NSS version.
These instances of manual root store modification in response to
CA issues reflect responsible root store management, especially for
Android which proactively removes problematic CAs.

Customized trust additions are less easily justified. From 2016~
2018, Amazon Linux continually re-added sixteen 1024-bit RSA
roots after they had been removed in NSS, and for a brief pe-
riod in 2018 added thirteen additional expired certificates and CA-
requested removals. We could not find a definitive reason for this be-
havior. Node]S re-added a deprecated ValiCert root due to OpenSSL
chain building issues [44]. These additions are likely necessitated
by impact to end users of the derivative root store, which differ
from NSS’s users and risk calculus.

Takeaways The majority of root providers in our study derive
their root stores from NSS, but nearly all derivative root stores
demonstrate concerning update and customized trust practices that
increase security risk. The root causes for customized trust are a
combination of root store design incompatibility, misapplication of
NSS roots, proactive removals, and additions to patch downstream
bugs. The root causes for update delay are less transparent, but
exploring the possible reasons (e.g., operational laxness, rigid de-
ployment timelines, deployment impact to users, etc.) can lead to
more efficient and secure NSS copying.

7 DISCUSSION

Even though TLS deployment has blossomed in recent years, the
root store ecosystem for TLS sever authentication remains relatively
condensed, with essentially three major root programs (Apple, Mi-
crosoft, Mozilla) that support a majority of popular user agents. As
more devices (i.e., Internet of Things) and applications (e.g., DNS-
over-HTTPS) employ TLS in the coming years, existing pain points
in the TLS root store ecosystem will become more pronounced.
Below, we highlight a few issues and potential solutions.

NSS derivative formats NSS acts as the de facto foundation
for root store providers that do not wish to operate their own root
store program. Even ignoring update staleness issues (Section 6.1),
the derivative root stores in our dataset have struggled to copy
NSS with high fidelity due to their inability to indicate partial
trust. While it may seem that there is significant inertia behind
the simple root certificate file/directory design, since applications
expect that interface, Microsoft and Apple already provide TLS
interfaces [70, 81] that account for more nuanced root store trust.
Given that multitudes more root stores likely already rely on NSS7,
we hope that future work will transition derivatives and new root
stores to more modern formats, while maintaining ease of use for
developers.

Single purpose root stores Multi-purpose root stores can lead
to trust in roots for unintended purposes. As seen with Apple and
NSS derivatives, many email signing roots were trusted for TLS
server authentication, even though the trusted roots may not have
had sufficiently compliant and secure operations for TLS server
authentication. More broadly, trust in a root for TLS server authen-
tication does not transfer to other PKI purposes. Multi-purpose root
stores can also confuse application developers. In the most egre-
gious case, anecdotal evidence showed that NuGet relied on NSS-
copied roots for code signing and timestamping, even though NSS
no longer trusts roots for code signing, and has never trusted roots
for timestamping. NSS inclusion is a gateway to a wide range of de-
rivative systems that use multi-purpose root stores, and any CA in
NSS can issue trusted code-signing certificates in these derivatives
without supervision or transparency checks. Moving forward, we
recommend a short-term push towards single purpose root stores,
such as those recently implemented by RHEL distributions and Ama-
zonLinux (i.e., separate t1s/email/objsign-ca-bundle.pem). In
the long term, we may need a more scalable, cross-platform de-
sign for arbitrary trust purposes if the Web PKI expands into an
internet-wide permissions system.

Data-informed root trust This study identifies which root pro-
grams trust which root CAs but has limited insight into why specific
CAs are trusted. Anecdotal evidence points to a range of reasons:
business relationships between CAs (especially government CAs)
and root programs, access to a wider set of subscribers, or simply be-
cause a compliant CA requested inclusion. These varied reasons for
root inclusion highlight the subjectivity of historical root program
policies, which can deviate from the core properties of the Web
PKI: scale and security. NSS and other root programs have started
increasing objectivity by enforcing the BRs (thereby increasing
operational security) and enumerating how new CAs might benefit
Mozilla’s users (by increasing scale or security) [112]. Prior work
such as ZLint [96] is a step towards more objective evaluation, and
future work around CA performance and root provider performance
is needed. Furthermore, transparency efforts for root program and
CA policies/behavior [97, 98] will facilitate the transition towards
data-informed root store trust.

7Searching certdata. txt in Github yields over 200K code results.

8 RELATED WORK

The research community has studied the certificate ecosystem
in great depth, with an emphasis on CA behavior and processes.
Initial work focused on collecting large certificate datasets [110],
evaluating the security of certificate chains [89, 92] (even invalid
chains [86]), and issues with the certificate issuance process [83, 84,
96]. More recent work has explored the impacts of CA certificate
cross-signing [91] and examined the operational control of CA cer-
tificates [98]. This work borrows certificate security metrics used
in these prior studies and applies them towards understanding the
behavior and processes of root store providers.

Investigations of root store providers are scattered. Some have
involved proposals to reduce the large attack surface of root stores,
where every root is a single point of failure that can authenticate
all domains. Braun et al. performed a user study (n=22) and found
that 90% of roots went unused [85]. Smith et al. explored a wide
range of root stores and attempted to quantify the minimum set
of roots to handle 99% of certificates collected by IPv4 scans [105],
but VanderSloot et al. later demonstrated that such scans miss a
majority of certificates due to the absence of SNI [110]. Other studies
have proposed automatically inferring TLD name constraints on
root CAs [93]. Ma et al. helped link CA certificates (roots and
intermediates) trusted by Apple, Microsoft, and Mozilla to the CAs
that operate them [98]. Our study expands on the set of root stores
examined by previous works and focuses on their provenance, CA
composition, and security behavior over time.

Several works have examined specific slices of TLS root stores.
Vallina-Rodriguez [109] et al. found that 39% of Android root stores
included certificates beyond the default Android root store. De-
vice manufacturers and mobile carriers installed a majority of
these additional certificates. Korzhitskii et al. identified additional
trusted roots in CT logs beyond those used by Microsoft, Apple,
and NSS [95], but the security relevance is indirect, since CT log
roots are a spam control mechanism. Looking at six network ap-
pliances that perform TLS interception, Waked et al. noted that
Untangle trusted roots that were immediately vulnerable to MITM
attacks [111].

9 CONCLUSION

This work uncovers the inverted pyramid structure of the mod-
ern TLS root store ecosystem. A super majority of popular user
agents all rely on one of three root programs, which have distinct
operational and inclusion practices that reflect differing levels of
coverage and risk. TLS root providers have converged on NSS as
the basis for nearly all new root stores, causing NSS changes to
have an outsized impact on the overall ecosystem. However, NSS
copying leads to complacent updates and instances of misuse that
we highlight as cautionary examples for future root stores.

10 ACKNOWLEDGEMENTS

We thank our shepherd Oliver Gasser and the anonymous review-
ers for their helpful suggestions. We also thank Clint Wilson for
insightful discussion. This work is supported in part by a Yunni &
Maxine Pao Memorial Fellowship and a gift from DigiCert.

REFERENCES

[19

[20

[21

[22

[23

[24

[25]

[26

[27

I
)

[29

[30
[31

[32]

[33

[34
[35

[36
[37
[38
[39
[40
[41

[42

[43

[n.d.]. About the security partial trust allow list. https://support.apple.com/
en-gb/HT204938.

[n.d.]. Add 2 new SECOM root certificates. https://bugzilla.mozilla.org/show_
bug.cgi?id=1313982.

[n.d.]. Add Asseco DS/ Certum root certificates. https://bugzilla.mozilla.org/
show_bug.cgi?id=1598577.

[n.d.]. Add Autoridad de Certificacion Raiz del Estado Venezolano root certificate.
https://bugzilla.mozilla.org/show_bug.cgi?id=1302431.

[n.d.]. Add CA Root certificate (Brazil’s National PKI). https://bugzilla.mozilla.
org/show_bug.cgi?id=438825.

[n.d.]. Add Chunghwa Telecom’s HiPKI Root CA -G1 Certificate to NSS. https://
bugzilla.mozilla.org/show_bug.cgi?id=1563417.

[n.d.]. Add Cisco Root CA Cert. https://bugzilla.mozilla.org/show_bug.cgi?id=
416842.

[n.d.]. Add D-TRUST Root CA 3 2013 to NSS. https://bugzilla.mozilla.org/
show_bug.cgi?id=1348132.

[n.d.]. Add DigiCert non-TLS Intermediate Certs to OneCRL. https://bugzilla.
mozilla.org/show_bug.cgi?id=1404501.

[n.d.]. Add Digidentity Service Root Certificate. https://bugzilla.mozilla.org/
show_bug.cgi?id=1558450.

[n.d.]. Add e-commerce monitoring’s GLOBALTRUST 2020 root certificate.
https://bugzilla.mozilla.org/show_bug.cgi?id=1627552.

[n.d.]. Add “Fina Root CA” root certificate. https://bugzilla.mozilla.org/show_
bug.cgi?id=1449941.

[n.d.]. add Finnish Population Register Centre’s Root CA Certificates. https://
bugzilla.mozilla.org/show_bug.cgi?id=463989.

[n.d.]. Add GLOBALTRUST 2015 root certificate. https://bugzilla.mozilla.org/
show_bug.cgi?id=1440271.

[n.d.]. Add MOI GPKI Root CA certificate(s). https://bugzilla.mozilla.org/
show_bug.cgi?id=1226100.

[n.d.]. Add MULTICERT Root Certificate. https://bugzilla.mozilla.org/show_
bug.cgi?id=1040072.

[n.d.]. Add OATI’s Root CA Certificate to Mozilla’s trusted root list. https://
bugzilla.mozilla.org/show_bug.cgi?id=848766.

[n.d.]. Add PostSignum root certificate. https://bugzilla.mozilla.org/show_bug.
cgi?id=643398.

[n.d.]. Add PostSignum Root QCA 4 to Root Store. https://bugzilla.mozilla.org/
show_bug.cgi?id=1602415.

[n.d.]. Add Renewed AC Camerfirma root certificate. https://bugzilla.mozilla.
org/show_bug.cgi?id=986854.

[n.d.]. Add Renewed ACEDICOM root certificate(s). https://bugzilla.mozilla.org/
show_bug.cgi?id=1239329.

[n.d.]. Add Symantec-brand Class 1 and Class 2 roots. https://bugzilla.mozilla.
org/show_bug.cgi?id=833986.

[n.d.]. Add Telia CA root certificate. https://bugzilla.mozilla.org/show_bug.cgi?
id=1664161.

[n.d.]. Add TunRootCA2 root certificate(s). https://bugzilla.mozilla.org/show_
bug.cgi?id=1233645.

[n.d.]. Add TunTrust Root CA root certificate. https://bugzilla.mozilla.org/
show_bug.cgi?id=1587779.

[n.d.]. Android ca-certificates. https://android.googlesource.com/platform/
system/ca- certificates.

[n.d.]. BearSSL. https://bearssl.org/.

[n.d.]. BoringSSL. https://boringssl.googlesource.com/boringssl/.

[n.d.]. Botan: Crypto and TLS for Modern C++. https://github.com/randombit/
botan.

[n.d.]. Bouncy Castle. http://git.bouncycastle.org/index.html.

[n.d.]. ca-certificates: Removal of GeoTrust Global CA requires investigation.
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=962596.

[n.d.]. ca-certificates should remove Symantec certs. https://bugs.debian.org/
cgi-bin/bugreport.cgi?bug=911289.

[n.d.]. CA/Additional Trust Changes. https://wiki.mozilla.org/CA/Additional
Trust_Changes.

[n.d.]. CA:Camerfirma Issues. https://wiki.mozilla.org/CA:Camerfirma_Issues.
[n.d.]. CAcert root cert inclusion into browser. https://bugzilla.mozilla.org/
show_bug.cgi?id=215243.

[n.d.]. CA/Certinomis Issues. https://wiki.mozilla.org/CA/Certinomis_Issues.
n.d.]. CA/Certinomis Issues. https://wiki.mozilla.org/CA/Certinomis_Issues.
n.d.]. CA:PROCERT Issues. https://wiki.mozilla.org/CA:PROCERT _Issues.
n.d.]. CA:Symantec Issues. https://wiki.mozilla.org/CA:Symantec_Issues.
n.d.]. CA:WoSign Issues. https://wiki.mozilla.org/CA:WoSign_Issues.

n.d.]. Chrome Root Program. https://www.chromium.org/Home/chromium-
security/root-ca-policy.

[n.d.]. CNNIC Action Items. https://bugzilla.mozilla.org/show_bug.cgi?id=
1177209.

[n.d.]. cryptlib. https://www.cs.auckland.ac.nz/~pgut001/cryptlib/.

[
[
[
[
L

https://support.apple.com/en-gb/HT204938
https://support.apple.com/en-gb/HT204938
https://bugzilla.mozilla.org/show_bug.cgi?id=1313982
https://bugzilla.mozilla.org/show_bug.cgi?id=1313982
https://bugzilla.mozilla.org/show_bug.cgi?id=1598577
https://bugzilla.mozilla.org/show_bug.cgi?id=1598577
https://bugzilla.mozilla.org/show_bug.cgi?id=1302431
https://bugzilla.mozilla.org/show_bug.cgi?id=438825
https://bugzilla.mozilla.org/show_bug.cgi?id=438825
https://bugzilla.mozilla.org/show_bug.cgi?id=1563417
https://bugzilla.mozilla.org/show_bug.cgi?id=1563417
https://bugzilla.mozilla.org/show_bug.cgi?id=416842
https://bugzilla.mozilla.org/show_bug.cgi?id=416842
https://bugzilla.mozilla.org/show_bug.cgi?id=1348132
https://bugzilla.mozilla.org/show_bug.cgi?id=1348132
https://bugzilla.mozilla.org/show_bug.cgi?id=1404501
https://bugzilla.mozilla.org/show_bug.cgi?id=1404501
https://bugzilla.mozilla.org/show_bug.cgi?id=1558450
https://bugzilla.mozilla.org/show_bug.cgi?id=1558450
https://bugzilla.mozilla.org/show_bug.cgi?id=1627552
https://bugzilla.mozilla.org/show_bug.cgi?id=1449941
https://bugzilla.mozilla.org/show_bug.cgi?id=1449941
https://bugzilla.mozilla.org/show_bug.cgi?id=463989
https://bugzilla.mozilla.org/show_bug.cgi?id=463989
https://bugzilla.mozilla.org/show_bug.cgi?id=1440271
https://bugzilla.mozilla.org/show_bug.cgi?id=1440271
https://bugzilla.mozilla.org/show_bug.cgi?id=1226100
https://bugzilla.mozilla.org/show_bug.cgi?id=1226100
https://bugzilla.mozilla.org/show_bug.cgi?id=1040072
https://bugzilla.mozilla.org/show_bug.cgi?id=1040072
https://bugzilla.mozilla.org/show_bug.cgi?id=848766
https://bugzilla.mozilla.org/show_bug.cgi?id=848766
https://bugzilla.mozilla.org/show_bug.cgi?id=643398
https://bugzilla.mozilla.org/show_bug.cgi?id=643398
https://bugzilla.mozilla.org/show_bug.cgi?id=1602415
https://bugzilla.mozilla.org/show_bug.cgi?id=1602415
https://bugzilla.mozilla.org/show_bug.cgi?id=986854
https://bugzilla.mozilla.org/show_bug.cgi?id=986854
https://bugzilla.mozilla.org/show_bug.cgi?id=1239329
https://bugzilla.mozilla.org/show_bug.cgi?id=1239329
https://bugzilla.mozilla.org/show_bug.cgi?id=833986
https://bugzilla.mozilla.org/show_bug.cgi?id=833986
https://bugzilla.mozilla.org/show_bug.cgi?id=1664161
https://bugzilla.mozilla.org/show_bug.cgi?id=1664161
https://bugzilla.mozilla.org/show_bug.cgi?id=1233645
https://bugzilla.mozilla.org/show_bug.cgi?id=1233645
https://bugzilla.mozilla.org/show_bug.cgi?id=1587779
https://bugzilla.mozilla.org/show_bug.cgi?id=1587779
https://android.googlesource.com/platform/system/ca-certificates
https://android.googlesource.com/platform/system/ca-certificates
https://bearssl.org/
https://boringssl.googlesource.com/boringssl/
https://github.com/randombit/botan
https://github.com/randombit/botan
http://git.bouncycastle.org/index.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=962596
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=911289
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=911289
https://wiki.mozilla.org/CA/Additional_Trust_Changes
https://wiki.mozilla.org/CA/Additional_Trust_Changes
https://wiki.mozilla.org/CA:Camerfirma_Issues
https://bugzilla.mozilla.org/show_bug.cgi?id=215243
https://bugzilla.mozilla.org/show_bug.cgi?id=215243
https://wiki.mozilla.org/CA/Certinomis_Issues
https://wiki.mozilla.org/CA/Certinomis_Issues
https://wiki.mozilla.org/CA:PROCERT_Issues
https://wiki.mozilla.org/CA:Symantec_Issues
https://wiki.mozilla.org/CA:WoSign_Issues
https://www.chromium.org/Home/chromium-security/root-ca-policy
https://www.chromium.org/Home/chromium-security/root-ca-policy
https://bugzilla.mozilla.org/show_bug.cgi?id=1177209
https://bugzilla.mozilla.org/show_bug.cgi?id=1177209
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/

[n.d.]. crypto: add deprecated ValiCert CA for cross cert. https://github.com/
nodejs/node/pull/1135.

n.d.]. Debian ca-certificates. https://salsa.debian.org/debian/ca-certificates.

. Docker hub: alpine. https://hub.docker.com/_/alpine/.

. Docker hub: amazonlinux. https://hub.docker.com/_/amazonlinux.

. Erlang OTP SSL. https://github.com/erlang/otp/tree/master/lib/ssl.

Ao

GnuTLS. https://gitlab.com/gnutls/gnutls/blob/master/README.md.
d.]. Google Groups: dev-security-policy@mozilla.org. https://groups.google.
com/a/mozilla.org/g/dev-security-policy.
[n.d.]. Google Groups: mozilla.dev.security.policy. https://groups.google.com/g/
mozilla.dev.security.policy.
[n.d.]. Java SE CA Root Certificate Program. https://www.oracle.com/java/
technologies/javase/carootcertsprogram.html.
[n.d.]. LibreSSL libtls. https://cvsweb.openbsd.org/src/lib/libtls/.
[n.d.]. MatrixSSL. https://github.com/matrixssl/matrixssl.
[n.d.]. Mbed TLS. https://github.com/ARMmbed/mbedtls.
[n.d.]. Microsec new (ECC) Root Inclusion Request. https://bugzilla.mozilla.org/
show_bug.cgi?id=1445364.
[n.d.]. Mozilla CA/FAQ. https://wiki.mozilla.org/CA/FAQ.
n.d.]. Network Security Services (NSS). https://hg.mozilla.org/projects/nss.

d

[
[
[
[
[
[

BB BBB

[
[n.d.]. Node]JS. https://github.com/nodejs/node.

[n.d.]. OkHttp. https://github.com/square/okhttp.

[n.d.]. OpenJDK. http://hg.openjdk.java.net/.

[n.d.]. Open]DK source. https://github.com/openjdk/.

[n.d.]. OpenSSL. https://github.com/openssl/openssl.

[n.d.]. Removed CA Certificate List. https://ccadb-public.secure.force.com/
mozilla/RemovedCACertificateReport.

[n.d.]. Review Request: ca-cacert.org - CAcert.org CA root certificates. https://
bugzilla.redhat.com/show_bug.cgi?id=474549.

[n.d.]. Root certificates used by Opera. https://web.archive.org/web/
20150207210358/http://www.opera.com/docs/ca/.

[n.d.]. RSA BSAFE. https://community.rsa.com/community/products/bsafe.
[n.d.]. s2n. https://github.com/awslabs/s2n.

[n.d.]. Secure Transport. https://opensource.apple.com/source/Security/.
[n.d.]. Secure Transport. https://developer.apple.com/documentation/security/
secure_transport.

[n.d.]. Super-CAs. https://wiki.mozilla.org/CA/Subordinate_CA_Checklist#
Super-CAs.

[n.d.]. Symantec root certs - Set CKA_NSS_SERVER_DISTRUST_AFTER. https://
bugzilla.mozilla.org/show_bug.cgi?id=1618404.

[n.d.]. Ubuntu ca-certificates. https://launchpad.net/ubuntu/+source/ca-
certificates.

[n.d.]. wolfSSL. https://github.com/wolfSSL/wolfssl.

2005. Apple Root Certificate Program. https://web.archive.org/web/
20050503225244/http://www.apple.com/certificateauthority/ca_program.html.
2010. Windows root certificate program members. https://web.archive.org/web/
20110728002957/http://support.microsoft.com/kb/931125.

2011. Security Update 2011-005. https://support.apple.com/kb/d11447.

2015. The MCS Incident and Its Consequences for CNNIC. https://blog.mozilla.
org/security/files/2015/04/CNNIC-MCS.pdf.

2018. Electron’s chromium is trusting different CAs then Electron’s Node]S.
https://github.com/electron/electron/issues/11741.

2018. Implement the Symantec distrust plan from
Bug 1409257. https://hg.mozilla.org/mozreview/gecko/rev/
£6c9341fde050d7079a8934636644aaf54bde922.

2018. Secure Channel. https://docs.microsoft.com/en-us/windows/win32/
secauthn/secure-channel.

Heather Adkins. 2011. An update on attempted man-in-the-middle at-
tacks. https://security.googleblog.com/2011/08/update-on-attempted-man-in-
middle.html.

Bernhard Amann, Robin Sommer, Matthias Vallentin, and Seth Hall. 2013. No
attack necessary: The surprising dynamics of SSL trust relationships. In 29th
Annual Computer Security Applications Conference.

Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek
Mittal. 2018. Bamboozling Certificate Authorities with BGP. In 27th USENIX
Security Symposium (USENIX Security).

Johannes Braun and Gregor Rynkowski. 2013. The potential of an individualized
set of trusted CAs: Defending against CA failures in the Web PKI. In International
Conference on Social Computing. IEEE.

Taejoong Chung, Yabing Liu, David Choffnes, Dave Levin, Bruce MacDowell
Maggs, Alan Mislove, and Christo Wilson. 2016. Measuring and applying
invalid SSL certificates: the silent majority. In 16th ACM Internet Measurement
Conference.

Jeremy Clark and Paul C Van Oorschot. 2013. SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements. In 34th
IEEE Symposium on Security and Privacy.

Jon Douglas. [n.d.]. Incident: NuGet Restore Issues on Debian Family Linux
Distros. https://github.com/NuGet/Announcements/issues/49.

[89]

[90]

[o1]

[92

[93]

[94]
[95]

[96]

[97]

[98

[99
[100

[101

[102

[103]

[104

[105

[106

=
S o
&L

[109

[110

[111

[112]

[113

Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman. 2013.
Analysis of the HTTPS certificate ecosystem. In 13th ACM Internet Measurement
Conference.

Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan,
Elie Bursztein, Michael Bailey, J. Alex Halderman, and Vern Paxson. 2017. The
Security Impact of HT TPS Interception. In Network & Distributed System Security
Symposium (NDSS ’17).

Jens Hiller, Johanna Amann, and Oliver Hohlfeld. 2020. The Boon and Bane of
Cross-Signing: Shedding Light on a Common Practice in Public Key Infrastruc-
tures. In 27th ACM Conference on Computer and Communications Security.
Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. 2011. The SSL
Landscape: A Thorough Analysis of the X.509 PKI Using Active and Passive
Measurements. In 11th ACM Internet Measurement Conference.

James Kasten, Eric Wustrow, and J Alex Halderman. 2013. CAge: Taming
certificate authorities by inferring restricted scopes. In International Conference
on Financial Cryptography and Data Security.

Jeff Kline, Paul Barford, Aaron Cahn, and Joel Sommers. 2017. On the structure
and characteristics of user agent string. In 17th Internet Measurement Conference.
Nikita Korzhitskii and Niklas Carlsson. 2020. Characterizing the Root Landscape
of Certificate Transparency Logs. In IFIP Networking Conference (Networking).
Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle
Beck, David Adrian, Joshua Mason, Zakir Durumeric,] Alex Halderman, and
Michael Bailey. 2018. Tracking certificate misissuance in the wild. In 39th IEEE
Symposium on Security and Privacy.

Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
RFC 6962. https://rfc-editor.org/rfc/rfc6962.txt

Zane Ma, Joshua Mason, Manos Antonakakis, Zakir Durumeric, and Michael
Bailey. 2021. What’s in a Name? Exploring CA Certificate Control. In 30th
USENIX Security Symposium (USENIX Security °21).

Mozilla. [n.d.]. Common CA Database. https://www.ccadb.org/.

Mozilla. [n.d.]. WoSign and StartCom. https://docs.google.com/document/d/
1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVIR8vQ/edit.

Johnathan Nightingale. 2011. DigiNotar Removal Follow Up. https://blog.
mozilla.org/security/2011/09/02/diginotar-removal-follow-up/.

Johnathan Nightingale. 2011. Fraudulent *.google.com Certificate. https://
blog.mozilla.org/security/2011/08/29/fraudulent- google-com-certificate/.
Devin O’Brien, Ryan Sleevi, and Andrew Whalley. [n.d.]. Chrome Plan
to Distrust Symantec Certificates. https://security.googleblog.com/2017/09/
chromes-plan-to-distrust-symantec.html.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825-2830.

Henning Perl, Sascha Fahl, and Matthew Smith. 2014. You won’t be needing these
any more: On removing unused certificates from trust stores. In International
Conference on Financial Cryptography and Data Security.

Ryan Sleevi. [n.d.]. Announcing the Chrome Root Program. https://groups.
google.com/g/mozilla.dev.security.policy/c/3Q36J4flnQs/m/VyWFiVwrBQAJ.
Rob Stradling. [n.d.]. authroot.stl. https://github.com/robstradling/authroot.stl.
Wayne Thayer. [n.d.]. DarkMatter Concerns. https://groups.google.com/g/
mozilla.dev.security.policy/c/nnLVNfqgz7g/m/TseYqDzaDAA].

Narseo Vallina-Rodriguez, Johanna Amann, Christian Kreibich, Nicholas Weaver,
and Vern Paxson. 2014. A Tangled Mass: The Android Root Certificate Stores.
In 10th ACM Conference on emerging Networking Experiments and Technologies.
Benjamin VanderSloot, Johanna Amann, Matthew Bernhard, Zakir Durumeric,
Michael Bailey, and J Alex Halderman. 2016. Towards a complete view of the
certificate ecosystem. In 16th ACM Internet Measurement Conference.

Louis Waked, Mohammad Mannan, and Amr Youssef. 2018. To intercept or
not to intercept: Analyzing TLS interception in network appliances. In Asia
Conference on Computer and Communications Security.

Ben Wilson. [n.d.]. Quantifying the Value of Adding a New CA. https://
groups.google.com/a/mozilla.org/g/dev-security-policy/c/LT_5efOFsSU.
Kathleen Wilson. 2016. https://blog.mozilla.org/security/2016/10/24/distrusting-
new-wosign-and-startcom-certificates/.

https://github.com/nodejs/node/pull/1135
https://github.com/nodejs/node/pull/1135
https://salsa.debian.org/debian/ca-certificates
https://hub.docker.com/_/alpine/
https://hub.docker.com/_/amazonlinux
https://github.com/erlang/otp/tree/master/lib/ssl
https://gitlab.com/gnutls/gnutls/blob/master/README.md
https://groups.google.com/a/mozilla.org/g/dev-security-policy
https://groups.google.com/a/mozilla.org/g/dev-security-policy
https://groups.google.com/g/mozilla.dev.security.policy
https://groups.google.com/g/mozilla.dev.security.policy
https://www.oracle.com/java/technologies/javase/carootcertsprogram.html
https://www.oracle.com/java/technologies/javase/carootcertsprogram.html
https://cvsweb.openbsd.org/src/lib/libtls/
https://github.com/matrixssl/matrixssl
https://github.com/ARMmbed/mbedtls
https://bugzilla.mozilla.org/show_bug.cgi?id=1445364
https://bugzilla.mozilla.org/show_bug.cgi?id=1445364
https://wiki.mozilla.org/CA/FAQ
https://hg.mozilla.org/projects/nss
https://github.com/nodejs/node
https://github.com/square/okhttp
http://hg.openjdk.java.net/
https://github.com/openjdk/
https://github.com/openssl/openssl
https://ccadb-public.secure.force.com/mozilla/RemovedCACertificateReport
https://ccadb-public.secure.force.com/mozilla/RemovedCACertificateReport
https://bugzilla.redhat.com/show_bug.cgi?id=474549
https://bugzilla.redhat.com/show_bug.cgi?id=474549
https://web.archive.org/web/20150207210358/http://www.opera.com/docs/ca/
https://web.archive.org/web/20150207210358/http://www.opera.com/docs/ca/
https://community.rsa.com/community/products/bsafe
https://github.com/awslabs/s2n
https://opensource.apple.com/source/Security/
https://developer.apple.com/documentation/security/secure_transport
https://developer.apple.com/documentation/security/secure_transport
https://wiki.mozilla.org/CA/Subordinate_CA_Checklist#Super-CAs
https://wiki.mozilla.org/CA/Subordinate_CA_Checklist#Super-CAs
https://bugzilla.mozilla.org/show_bug.cgi?id=1618404
https://bugzilla.mozilla.org/show_bug.cgi?id=1618404
https://launchpad.net/ubuntu/+source/ca-certificates
https://launchpad.net/ubuntu/+source/ca-certificates
https://github.com/wolfSSL/wolfssl
https://web.archive.org/web/20050503225244/http://www.apple.com/certificateauthority/ca_program.html
https://web.archive.org/web/20050503225244/http://www.apple.com/certificateauthority/ca_program.html
https://web.archive.org/web/20110728002957/http://support.microsoft.com/kb/931125
https://web.archive.org/web/20110728002957/http://support.microsoft.com/kb/931125
https://support.apple.com/kb/dl1447
https://blog.mozilla.org/security/files/2015/04/CNNIC-MCS.pdf
https://blog.mozilla.org/security/files/2015/04/CNNIC-MCS.pdf
https://github.com/electron/electron/issues/11741
https://hg.mozilla.org/mozreview/gecko/rev/f6c9341fde050d7079a8934636644aaf54bde922
https://hg.mozilla.org/mozreview/gecko/rev/f6c9341fde050d7079a8934636644aaf54bde922
https://docs.microsoft.com/en-us/windows/win32/secauthn/secure-channel
https://docs.microsoft.com/en-us/windows/win32/secauthn/secure-channel
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://github.com/NuGet/Announcements/issues/49
https://rfc-editor.org/rfc/rfc6962.txt
https://www.ccadb.org/
https://docs.google.com/document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit
https://docs.google.com/document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit
https://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
https://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
https://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
https://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://groups.google.com/g/mozilla.dev.security.policy/c/3Q36J4flnQs/m/VyWFiVwrBQAJ
https://groups.google.com/g/mozilla.dev.security.policy/c/3Q36J4flnQs/m/VyWFiVwrBQAJ
https://github.com/robstradling/authroot.stl
https://groups.google.com/g/mozilla.dev.security.policy/c/nnLVNfqgz7g/m/TseYqDzaDAAJ
https://groups.google.com/g/mozilla.dev.security.policy/c/nnLVNfqgz7g/m/TseYqDzaDAAJ
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/LT_5efOFsSU
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/LT_5efOFsSU
https://blog.mozilla.org/security/2016/10/24/distrusting-new-wosign-and-startcom-certificates/
https://blog.mozilla.org/security/2016/10/24/distrusting-new-wosign-and-startcom-certificates/

A POPULAR OS & TLS SOFTWARE ROOT STORES

Name Root store? Details
Alpine Linux Yes Popular Docker image base.
g Amazon Linux Yes AWS base image.
% Android Yes Most common mobile OS. Also used for Android Automotive.
& ChromeOS Yes Proprietary Google product, based on Chromium OS. Excluded because no build target
%D history.
g Debian Yes One of the oldest Linux distributions, base of popular OSes such as OpenWRT/Ubuntu.
& 10S/macOS Yes Popular mobile / PC Apple devices that use a common root store.
Microsoft Windows Yes Popular PC and server operating system.
Ubuntu Yes Popular desktop Linux distribution, based on Debian.
AlamoFire No Popular Swift HTTP library.
Botan [29] No Defaults to root store.
BoringSSL [28] No Google fork of OpenSSL used in Chrome/Chromium/Android.
Bouncy Castle [30] No No default, requires configured keystore.
cryptlib [43] No Unknown default.
GnuTLS [49] No Configuration via -with-default-trust-store-<format> flag.
Java Secure Socket Ext. (JSSE) [61] Yes cacerts JKS file.
% LibreSSL libtls/libssl [53] No Configured TLS_DEFAULT_CA_FILE.
'é MatrixSSL [54] No No default, requires configuration.
75 Mbed TLS (prev. PolarSSL) [55] No No default, requires configuration of ca_path/ca_file.
2 Network Security Services (NSS) [58] Yes Root store in certdata. txt, add’l trust elsewhere [33].
= OkHttp [60] No Uses platform (e.g., JSSE, BouncyCastle, etc.) TLS.
OpenSSL [63] No Defaults to $OPENSSLDIR/{certs, cert.pem}, often symlinked by installer to system certs
for Linux. Windows / macOS
RSA BSAFE [67] No Unknown default.
S2n [68] No Defaults to system stores.
SChannel [81] No Defaults to system (Microsoft) store.
wolfSSL (prev. CyaSSL) [74] No No default, requires configuration.
Erlang/OTP SSL [48] No Unknown default.
BearSSL [27] No No default, requires configuration.
NodeJS [59] Yes Static file src/node_root_certs.h.
Safari No Uses macOS root store®.
Mobile Safari No Uses iOS root store.
Chrome Yes* Historically used system roots, with browser control of EV and special cases such as the
distrust of Symantec [103]. As of December 2020, the Chrome root store [41] was deployed
- on ChromeOS and Linux, with full transition for other OSes pending [106].
S Chrome Mobile No Uses Android root store.
T Chrome Mobile iOS No Uses i0S root store; Apple policy prohibits custom root stores.
9 Edge No Uses Windows system certificates not via SChannel.
& Internet Explorer No Uses Windows system certificates via SChannel.
Firefox Yes Uses NSS root store.
Opera No* Independent root program until 2013 [66]. Uses Chromium (system roots) and Chrome EV.
Electron Yes Chromium + Node]S application framework that can use roots through both.
360Browser Yes Qihoo browser popular in China. Excluded because no open source history.
curl No Uses libcurl, which can be compiled to use system defaults (e.g., Schannel, SecureTransport)
or custom.
wget No Specified in wgetrc configuration file. USes GnuTLS, previously OpenSSL.

Table 5: Popular OS & TLS Software Root Stores

B ROOT PROGRAM EXCLUSIVE DIFFERENCES

Cert SHA256 CA NSS inclusion? Details
NSS (1)
beb00b30... Microsec Accepted [56] New elliptic curve root.
Java (0) - - -
Apple (13)
Oed3ffab... Gov. of Venezuela Denied [4] Microsoft trusts same issuer for email, disallowed on 2020-02 (PSPProcert). Failed NSS
inclusion for same issuer due to super CA concerns.
9f974446. .. Certipost - CA requested cross-sign revocation [9]: cessation of TLS server certs.
€3268f61... ANF - Microsoft trusts same issuer for email, distrust after 2019-02-01.
6639d13c... Echoworx - Microsoft trusted for email.
92d8092e... Nets.eu - Microsoft trusted for email.
9d190b2e... DigiCert Accepted [22] Trusted by Microsoft and NSS for email.
cb627d18... DigiCert Accepted [22] Trusted by Microsoft and NSS for email.
ala86d04. .. D-TRUST Accepted [8] Microsoft/NSS trusted for email.
5 roots Apple - Roots for custom Apple Services (e.g., FairPlay, Developer ID)
Microsoft (30)
1501f89c... EDICOM Denied [21] Inadequate audits, issuance concerns, CA unresponsiveness.
416b1fYe. .. e-monitoring.at Denied [14] CA certificate violations of the BRs and RFC 5280.
6e0bft06. .. Gov. of Brazil Denied [5] Super CA concerns, insufficient auditing / disclosure.
c795118f. ... Gov. of Tunisia Denied [24] Repeated misissuance exposed during public discussion.
407c276b... Gov. of Korea Denied [15] Rejected due to confidential, unrestrained subCAs.
c1d80ced4. .. AC Camerfirma Denied [20] Numerous issues [34], lead to May 2021 removal of all Camerfirma roots.
ad016f95. .. PostSignum Abandoned [18] New PostSignum root inclusion attempt running into issues [19].
7a77¢6¢6. .. OATI Abandoned [17] No response in 3 years.
604d32d0. .. MULTICERT Abandoned [16] External subCA concerns and other misissuance. MULTICERT intermediate distrusted
in Camerfirma removal [34].
€2809772... Digidentity Retracted [10]
2e44102a. .. Gov. of Tunisia Pending [25] Community concerns about added-value of the root.
e74fbdas... SECOM Pending [2] Pending since 2016 due to ongoing issue resolution.
24a55c2a... SECOM Pending [2] Pending since 2016 due to ongoing issue resolution.
fo15ce3c... Chunghwa Telecom Pending [6]
5ab4fcdb. .. Fina Pending [12]
242b6974. .. Telia Pending [23] < 100 leaf certificates in CT.
eb7e05aa. .. NETLOCK Kft. Cross-signed by Microsoft Code Verification Root, which only has kernel-mode code
signing permissions.
5b1d9d24... Gov. of Spain, MTIN - Expired in Nov 2019, no intermediates/children in CT.
34ff2a44... Gov. of Finland - Previously abandoned NSS inclusion for a different root [13].
229cccl19... Cisco - < 100 leaf certificates in CT. NSS rejected older root issuing local certificates shipped
with Cisco devices [7].
d7ba3f4f... Halcom D.D. - < 100 leaf certificates in CT.
7d2bf348... Spain Commercial Reg. - < 100 leaf certificates in CT.
€2157309... NISZ - < 200 leaf certificates in CT.
608142da... TrustFactory - < 100 leaf certificates in CT.
a3cc6859... DigiCert - WiFi Alliance Passpoint roaming.
68ad5090... DigiCert - Trusted intermediate in NSS/Apple/Java via Baltimore CyberTrust Root.
1a0d2044. .. Sectigo - Apple/NSS trusted issuer through different root certificate.
3 roots Asseco/e-monitoring.at Approved [3, 11] Recently approved by NSS, awaiting addition.

Table 6: Root Store Differences—Java and NSS rarely implement unique trust, while Apple and Microsoft display more permissive

inclusion.

C NSS ROOT REMOVALS

BugzillaID Severity Removed On # Certs Details

1552374 high 2019-07-05 1 Certinomis removal [36]

1392849 high 2017-11-14 3 StarCom removal [113]

1408080 high 2017-11-14 1 PSPProcert removal [38]

1387260 high 2017-11-14 4 WoSign removal [40]

1380868 high 2017-07-27 2 CNNIC removal [78]

682927 high 2011-10-06 1 DigiNotar removal [101]

1670769 medium 2020-12-11 10 Symantec distrust - root certificates ready to be removed
1656077 medium 2020-09-18 1 Taiwan GRCA missisuance: Bugzilla ID: 1463975
1618402 medium 2020-06-26 3 Symantec distrust - root certificates ready to be removed

Table 7: NSS Root Removals—High and medium severity removals from NSS since 2010.

	Abstract
	1 Introduction
	2 Background
	3 Root store providers
	3.1 Data Collection & Limitations

	4 Root store families
	5 Comparing root stores
	5.1 Root store management
	5.2 Exclusive Differences
	5.3 Trusting NSS removals

	6 NSS Derivatives
	6.1 Update Dynamics
	6.2 Derivative Differences

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Popular OS & TLS Software Root Stores
	B Root Program Exclusive Differences
	C NSS Root Removals

