
FTP: The Forgotten Cloud

Drew Springall Zakir Durumeric J. Alex Halderman
University of Michigan

{aaspring, zakir, jhalderm}@umich.edu

Abstract—Once pervasive, the File Transfer Protocol (FTP)
has been largely supplanted by HTTP, SCP, and BitTorrent for
transferring data between hosts. Yet, in a comprehensive analysis
of the FTP ecosystem as of 2015, we find that there are still more
than 13 million FTP servers in the IPv4 address space, 1.1 million
of which allow “anonymous” (public) access. These anonymous
FTP servers leak sensitive information, such as tax documents
and cryptographic secrets. More than 20,000 FTP servers allow
public write access, which has facilitated malicious actors’ use
of free storage as well as malware deployment and click-fraud
attacks. We further investigate real-world attacks by deploying
eight FTP honeypots, shedding light on how attackers are abusing
and exploiting vulnerable servers. We conclude with lessons and
recommendations for securing FTP.

I. INTRODUCTION

The File Transfer Protocol (FTP), first introduced nearly
45 years ago [7], was for decades the protocol of choice for
moving files between hosts and for distributing them to the
world [17]. In recent years, FTP has been largely eclipsed
by newer protocols such as HTTP, SCP, and BitTorrent—all
of which have received vastly more attention from security
researchers. Nevertheless, as of 2015, FTP remains in use by
millions of servers that offer more than half a billion files to
the public: it is largely forgotten but far from gone.

We present the first comprehensive security analysis on
how FTP is used and abused in modern practice. We begin by
using Internet-wide scanning to characterize the contemporary
FTP server ecosystem, which we find consists of 13.8 million
servers in the public IPv4 address space1. Of these servers,
1.1 million (8%) permit anonymous logins, making their
contents accessible to the public at large. Although many of
these publicly accessible servers are operated by large hosting
providers, a substantial fraction are consumer devices that
provide remote access to data and appear to be mistakenly
configured to allow public access.

Publicly accessible FTP sites host an alarming number and
variety of sensitive files, which suggests that misconfiguration
is widespread. To measure the scope of this phenomenon,
we construct a robust FTP enumerator and use it to collect
the directory listings of over a million anonymous FTP sites.
Since the protocol has accumulated layers of ad hoc extensions
over the years, this is challenging to automate at large scale.
Nevertheless, our toolchain is able to collect listings of over
600 million files and directories, which range from financial
information to email archives, password databases, private keys,
and personal photographs. Startlingly, we find that nearly 5%
of anonymous FTP servers appear to expose at least one such
sensitive file.

1In comparison, about 30M hosts complete a TLS handshake on TCP/443,
but these have been studied far more extensively (e.g., [21], [30], [32]).

Beyond information exposure, FTP is prone to abuse by
malicious parties who seek to attack the server or use it to ex-
ploit other systems. Drawing on data from our FTP enumerator
and from a series of honeypots, we uncover evidence of several
malicious campaigns that leverage anonymous FTP servers to
distribute malware, launch DDoS attacks, and carry out SEO
campaigns. Among our findings is that more than 20K FTP
servers allow anonymous users to write data—which malicious
actors are using to deploy malware and trade illicit files—and
more than 140K fail to properly validate PORT commands—
which can be used to probe remote, third-party servers. We
also find that nearly 10% of FTP servers listening on public IP
addresses report software versions that are susceptible to one
or more publicly disclosed vulnerabilities.

With regard to the security provided by FTPS (a protocol
extension which allows FTP connections to communicate over
TLS), we analyzed the adoption rate as well as how it is being
implemented. We find only 793K certificates are in use across
3.4 million servers who support FTPS. While a large number of
these are shared-hosting providers, we also find evidence that
embedded device manufacturers are shipping identical FTPS
certificates and private keys built-in to their devices.

We conclude by attempting to distill the root causes of
FTP’s persistent vulnerability, by offering potential solutions to
improve the FTP ecosystem, and by drawing lessons about user-
centered security issues that apply even beyond FTP. Along with
these solutions, we analyze possible methods of encouraging
their deployment.

FTP is a product of a time when security was much less
of a focus than it is on today’s Internet. Although the protocol
continues to be implemented and deployed, the FTP ecosystem
as a whole has only marginally advanced in terms of security.
While the existence of FTP-related vulnerabilities may not
come as a surprise, the vast number of vulnerable systems and
sensitive files—and their persistence up to the present—is
shocking. Our study presents a dismal portrait of how FTP is
deployed in 2015, but we hope that by shedding light on these
ongoing vulnerabilities, the network security community can
begin to address them.

II. BACKGROUND

FTP was introduced in 1971 to allow users to transfer files
between network hosts [7]. Clients send text requests in the form
of “<Command> [arguments]\r\n” to the server and extract a
three-digit return code and other request-dependent information
from the server’s response to determine whether the request was
successful. In a typical scenario, a client initiates a connection
on TCP/21, and, after receiving a “banner” containing arbitrary
text from the server, logs in with the USER and PASS commands.
Once authenticated, the client can list and traverse the accessible

directory structure and upload and download files (depending
on the permissions set by the administrator).

In a peculiarity of the protocol, FTP requires two con-
nections: one for control messages and one for transferring
the requested data. In traditional active FTP, the client sends
the PORT command whose arguments indicate the client’s IP
address and an open, ephemeral port that the server should
connect back to using a second connection. Unfortunately, this
is incompatible with many firewalls and NATs, which are unable
to detect that the inbound connection is associated with the
original outgoing FTP connection. To address this, passive FTP
was introduced, in which the client sends the PASV command
and the server responds with and listens on an ephemeral port
that the client opens a second connection to [6]. Regardless
of whether the connection is active or passive, the client can
then send requests via the control connection to list directory
contents and retrieve or store files, which are transmitted via
the secondary (PORT/PASV negotiated) connection.

Although FTP provided an easy and efficient way to transfer
files, the mandatory authentication hindered publicly posting
data. To address this, the protocol was extended to support
anonymous FTP, which allows administrators to explicitly allow
public access. To use anonymous FTP, the client authenticates
with the username “anonymous” and their contact e-mail
address as the password (if the server requires one). A server
configured to allow anonymous FTP will accept any password
for the anonymous user [17].

As with many early protocols, FTP was designed with only
minimal consideration for security, such that both commands
and data are sent in unauthenticated, unencrypted form. To
address this, FTPS was introduced [3], [26]. FTPS allows the
endpoints to upgrade the connection to TLS, akin to STARTTLS
for SMTP. The client sends the AUTH SSL or AUTH TLS request
to the server and reads the response to determine if TLS is
supported. If so, the client and servers complete a standard
TLS handshake and then continue with the FTP protocol over
the secure connection.

This patchwork of extensions—some described in RFCs
and some not—has resulted in diverse behavior by different
FTP implementations. Server responses to the USER login
request are a prime example. The return code 331 has at
least four meanings depending on the implementation- and
language-specific text that accompanies it: “User accepted,
send password”, “User rejected”, “Send virtual-site hostname
with username”, or “FTPS required prior to login”.

While other protocols might fragment under such loose
standardization, FTP has been surprisingly resilient. Bare-
bones FTP clients are capable of talking to most server
implementations. This is largely due to the human-centered
nature of the protocol. FTP clients perform very little of the
“heavy lifting” for the user and mainly serve to make FTP
communication less tedious. For many operations, replacing a
console-based FTP client with a bare TCP connection would
result in little additional work for the user.

Unfortunately, this level of user control is an obstacle
to large-scale automation and to our goal of analyzing FTP
behavior on an Internet-wide basis. In order to study the FTP
ecosystem as a whole, we needed to build tools that could

carry out all actions autonomously while being robust enough to
correctly communicate with diverse real-world implementations.

III. METHODOLOGY

To survey FTP at Internet scale, we needed to address three
main challenges. The first was how to automate handling of
the FTP protocol, with its quirks and myriad implementations.
We adopted a reverse-engineering perspective: starting from
a simple enumerator that implemented a minimal subset of
the FTP protocol, we began testing on a local testbed that
consisted of a diverse collection of server implementations.
After ensuring correct behavior on our testbed, we tested against
gradually larger random samples of live servers. By iteratively
expanding the capabilities of the enumerator and reactively
adjusting its behavior to oddities found in the wild, we attained
a good balance of RFC correctness and compatibility with real
implementations.

The second challenge was how to efficiently collect data
from FTP servers throughout the IPv4 address space. We
adopted a methodology based on the ZMap toolchain [23]
coupled with our custom FTP enumerator. In the first stage
of our data collection, we used ZMap to perform a host
discovery scan on TCP port 21. We then used our enumerator
to perform a follow-up connection to each responsive host,
attempt an anonymous login (per RFC 1635 [17]), parse
each host’s robots.txt file, and traverse the host’s directory
structure in a breadth-first manner. Once we finished traversing
any publicly accessible directories, we collected the data
returned by the HELP, FEAT, and SITE commands. Regardless
of whether the server allowed anonymous access, we attempted
to initiate a TLS session prior to disconnecting to collect the
server’s SSL certificate. Our enumerator is written in C using
the libevent framework [36] and is publicly available at
https://github.com/aaspring/ftp-enumerator.

The last main challenge was how to process and analyze the
resulting data, which is largely unstructured. Server banners
contain arbitrary text, users name files in varying manners
and in different languages, and, in some cases, filenames may
not describe file content. In order to sift through all this data
and establish lower bounds on vulnerability and data exposure,
we iteratively processed the dataset, manually selecting and
investigating specific evidence of abuse or accidentally exposed
data. After each iteration, we measured the number of servers
displaying the same or similar behavior. Although this provides
an estimate of the range and scope of vulnerability, it may
result in the statistics we report underestimating the true scale
of the problems.

Since many files appeared to contain sensitive data that
was inadvertently made public, we chose not to download
files in bulk using our enumerator. For purposes of high-
level statistics, we attempted to infer file contents based on
the filename and extension. Without attempting downloads,
we cannot determine with certainty whether the anonymous
FTP user has permission to read the files. To address this,
we examined the all-users permission in directory listings to
determine whether an anonymous user could likely retrieve
each specific file. In cases where the server did not display
permissions (as with most Windows-based servers), we labeled
the files as “unk-readability”.

2

https://github.com/aaspring/ftp-enumerator

A. Ethical Considerations

As with any research conducted through Internet-wide
scanning, our work raises important ethical considerations. We
carefully considered the impact of our experimental measure-
ments on parties ranging from our local institutional network
to the owners of remote systems, and we took numerous steps
to prevent or mitigate potential harms.

When scanning for FTP sites, we followed the recommen-
dations set forth by Durumeric et al. [23]. We coordinated with
our local network administrators and upstream ISP to ensure
that our scans did not adversely impact network operations.
We signaled the benign intent of our scanning hosts by setting
descriptive WHOIS records and reverse DNS entries for them
and posting a simple website on port 80 that described the
goals of the research, including what data we collected and how
to contact us. We invited user exclusion requests and responded
to requests within 24 hours, and we preemptively excluded any
hosts that our institution had previously been asked to exclude
from scanning research as part of other studies.

When logging into FTP servers, we never attempted to
guess login credentials or to exploit vulnerabilities to access
non-public data. We also made a concerted effort to parse FTP
banners for messages stating that the server did not permit
anonymous access and discontinued the login attempt in that
case. We strictly followed RFC 1635 (“How to Use Anonymous
FTP”) [17]. If the server required a password for the anonymous
login, we sent our team’s abuse contact email address.

When traversing sites, we followed the community’s Robots
Exclusion Standard, fetching each host’s robots.txt file,
if present, and following it per Google’s specification [29].
To ensure that we did not inundate a server with requests,
we spread concurrent connections across a large number of
widely dispersed hosts, and we limited the speed of interactions
with each host to two requests per second. We also imposed
a maximum of 500 requests per connection. If the server
terminated the connection at any point during directory traversal,
we interpreted this as an explicit refusal of service and ceased
interaction with that server.

As we will discuss in the remainder of the paper, we
were surprised to find that a significant fraction of the data
available via anonymous FTP appears to have been inadvertently
published. For this reason, we stopped short of downloading
files except in a few particular instances as necessary for
verification and even then only after careful deliberation and
consultation with colleagues. Despite the fact that these files
and directory listings are publicly accessible, there would be
significant risk in publishing an exhaustive list of files that
could then be then be trivially retrieved and potentially abused.
As such, we do not intend to publish our enumeration dataset.
We are working to notify responsible entities in likely instances
of sensitive information disclosure.

IV. FTP LANDSCAPE

Between June 18 and 21, 2015, we performed a scan of
the IPv4 address space and enumerated publicly accessible
FTP servers. In this scan, 21.8M hosts responded on port 21
and 13.8M sent an FTP-compliant banner. Of these, 1.1M
(8%) allowed anonymous access (see Table I). Of the servers

TABLE I. GENERAL METRICS FROM FTP ENUMERATION

IPs scanned 3,684,755,175 (85.79% of IPv4 address space)
Open port 21 21,832,903 (0.59% of scanned IPs)
FTP servers 13,789,641 (63.16% of IPs with port open)
Anonymous FTP servers 1,123,326 (8.15% of responsive FTP servers)

TABLE II. BREAKOUT OF SERVERS IN EACH CATEGORY

Server Classification All FTP Servers Anonymous FTP Servers

Generic Server 5,957,969 (43.21%) 704,276 (62.66%)
Hosted Server 1,795,596 (13.02%) 174,198 (15.50%)
Embedded Server 1,786,656 (12.95%) 93,484 (8.32%)

Unknown 4,249,417 (30.82%) 151,927 (13.52%)

TABLE III. ASES ACCOUNTING FOR 50% OF ALL FTP TYPES

AS Type All FTP (78) Anonymous FTP (42)

Hosting 50 29
ISP 25 11
Academic 3 2

TABLE IV. CLASSES OF EMBEDDED DEVICES

Device Type All FTP Anonymous FTP

NAS 198,381 18,116
Home Router (user-deployed) 59,944 6,788
Printers 62,567 60,771

that allowed anonymous access, 268K (24%) exposed some
form of data; the remainder contained empty or inaccessible
directories. We detected robots.txt files on 11.3K servers.
Of these, 5.9K instructed our crawler to exclude the entire
filesystem, which we adhered to. On 26.7K servers, the file
structure required more than 500 requests to fully traverse,
and so our enumeration did not reach the entire accessible
filesystem.

A. Who is Deploying FTP?

We find that FTP servers and anonymous FTP servers are
both widespread, with 34.7K ASes containing FTP servers and
16.4K ASes containing anonymous FTP servers. While FTP
servers are present in a large number of networks, a few ASes
contain the bulk of these servers: 78 ASes account for 50%
of FTP servers, and 42 ASes account for 50% of anonymous
FTP servers (see Figure 1).

To better understand why servers allow anonymous FTP
access in so many networks, we categorized the networks
that contain a large number of anonymous FTP servers and
also developed fingerprints to identify specific implementations
and devices based on banner, certificate, and implementation-
specific responses. With these fingerprints, we were able to
classify 69% of all FTP servers and 86% of anonymous FTP
servers into one of several broad categories: (1) large shared-
hosting providers, (2) provider-deployed embedded devices
(e.g., cable modems), (3) consumer-deployed devices (e.g.,
home NAS devices), and (4) generic servers (i.e., widespread
implementations that we were not able to categorize further).
We show the breakdown in Table II. We note that our estimates
in the “Hosted Server” and “Embedded Server” categories
are lower bounds, since some devices and services do not
expose identifiers that allow for more specific classification.

3

However, even the lower bounds demonstrate that the problems
are systemic.

Shared Hosting Providers. As shown in Table III, IP
addresses within large hosting provider ASes account for a
substantial portion of both FTP and anonymous FTP servers. 50
of the largest 78 FTP ASes and 29 of the 42 largest anonymous
FTP ASes are owned by large hosting providers that offer
shared hosting, virtual private server (VPS), co-location, and/or
private cloud services. Table VI shows more details on the
most commonly seen ASes.

These providers appear to deploy FTP as part of their
default service offering, which, anecdotal evidence suggests, are
managed using web hosting automation software such as cPanel
or Plesk. In total—combining the hosts from the large providers
we identified and our fingerprints—we estimate that at least
4.6M FTP servers (34%) and 470K anonymous FTP servers
(42%) belong to hosting providers. In the largest case, home.pl
(a large Polish hosting provider), approximately two-thirds of
all advertised IPs support FTP, and more than half support
anonymous FTP. However, despite the large raw numbers, we
find that, in general, there is little sensitive user data exposed
on these hosts compared to personal devices.

Provider Deployed Embedded Devices. As can be seen
in Table III, all but a handful of the remaining large ASes
belong to ISPs. In many cases, service providers have deployed
embedded devices, such as DSL modems, all of which have FTP
enabled. In the most common case, more than 150K FRITZ!Box
DSL modems are found. The modems are primarily located
in Germany and have been deployed en masse by Deutsche
Telekom. We also frequently saw devices from ZyXEL, AXIS,
ZTE, and others (see Table V). A negligible fraction of the
devices had anonymous FTP enabled.

Consumer Embedded Devices. Most worryingly, we
find that hundreds of thousands of consumer devices have
FTP enabled, and over 93K of these devices allow anonymous
access. These devices are largely network attached storage
(NAS) appliances, home wireless routers, and printers. These
home devices are from a variety of manufacturers, including
Buffalo, Asus, Xerox, Dell, Ricoh, and Synology. We present
the most common devices in Table VII.

For three of the devices we identified, more than 98% of
visible hosts have anonymous FTP enabled. While it is plausible
that a few home users are intentionally enabling anonymous
FTP to publish data to the world, that such a large fraction
are doing so seems unlikely. Instead, we suspect that these
particular devices enable anonymous FTP by default, or that

TABLE V. COMMON PROVIDER DEPLOYED DEVICES — WE FIND
THAT INTERNET SERVICE PROVIDERS FREQUENTLY DEPLOY DEVICES WITH

FTP EN MASSE. VERY FEW HAVE ANONYMOUS ACCESS ENABLED.

Device # Found # Anonymous

FRITZ!Box DSL modem 152,520 49 (0.03%)
ZyXEL DSL Modem 29,376 1 (0.00%)
AXIS Physical Security Device 20,002 58 (0.29%)
ZTE WiMax Router 14,245 0 (0.00%)
Speedport DSL Modem 13,677 0 (0.00%)
Dreambox Set-top Box 12,298 0 (0.00%)
ZyXEL Unified Security Gateway 11,964 0 (0.00%)
Alcatel Router 10,383 0 (0.00%)
DrayTek Network Devices 4,161 0 (0.00%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

ASes

All FTP Servers
Anonymous FTP Servers

Writable FTP Server

Fig. 1. Distribution of FTP servers by AS. CDF of all FTP, anonymous FTP,
and writable FTP servers with regard to aggregate number of ASes viewed.

TABLE VII. SAMPLE OF EMBEDDED SERVER DEVICES THAT ARE
DEPLOYED AS STANDALONE

Device # Found # Anonymous

QNAP Turbo NAS 57,655 1,637 (2.84%)
ASUS wireless routers 52,938 5,891 (11.13%)
Synology NAS devices 43,159 2,942 (6.82%)
Buffalo NAS storage 22,558 8,870 (39.32%)
ZyXEL/MitraStar NAS 9,456 310 (3.28%)
RICOH Printers 8,696 7,606 (87.47%)
LaCie storage 4,558 2,919 (64.04%)
Lexmark Printers 3,908 3,896 (99.69%)
Xerox Printers 3,130 2,906 (92.84%)
Dell Printers 2,555 2,515 (98.43%)
Linksys Wifi Routers 2,174 624 (28.72%)
Lutron HomeWorks Processor 1,006 1,003 (99.70%)
Seagate Storage devices 629 594 (94.44%)

they are designed in a way that leads users to misunderstand
the risks of enabling certain features.

The surprising number of servers that support anonymous
FTP raises several important questions: What data has been
inadvertently leaked on these devices? In the shared hosting
environments, code frequently contains API keys, and other
secrets; are these files accessible over anonymous FTP? Are
malicious actors taking advantage of these servers? In the next
several sections, we present case studies in which we investigate
these questions.

V. OVER EXPOSURE

With more than 1.1M FTP servers anonymously accessible,
the questions “What data is exposed?” and “Are users explicitly
posting this data?” immediately arise. We investigated the
directory listings from publicly accessible anonymous FTP
servers and found that a large amount of user data is being
exposed to the public. In this section, we discuss the files
available on anonymous servers and the devices responsible
for this data exposure.

A. Data Exposure

Within our dataset, index.html is the most common
file found with 494K instances on nearly 25K servers. This
comports with our previous analysis describing large hosting

4

TABLE VI. TOP 10 ASES BY NUMBER OF ANONYMOUS FTP SERVERS

AS IPs advertised FTP servers Anonymous FTP servers

AS12824 home.pl S.A. 205,312 136,765 (66.61%) 103,175 (75.44%)
AS46606 Unified Layer 516,864 246,470 (47.69%) 44,273 (17.96%)
AS2914 NTT America, Inc. 7,880,192 298,468 (3.79%) 36,045 (12.08%)
AS20013 CyrusOne LLC 111,360 64,790 (58.18%) 30,772 (47.50%)
AS40676 Psychz Networks 641,024 64,233 (10.02%) 27,507 (42.82%)
AS34011 domainfactory GmbH 93,440 21,153 (22.64%) 19,077 (90.19%)
AS4134 Chinanet 120,757,504 464,384 (0.39%) 18,996 (4.09%)
AS18978 Enzu Inc 727,808 73,541 (10.11%) 17,510 (23.81%)
AS18779 EGIHosting 1,890,304 27,804 (1.43%) 16,329 (58.73%)
AS4766 Korea Telecom 53,733,632 211,479 (0.39%) 16,222 (7.67%)

TABLE VIII. MOST COMMON FILE EXTENSIONS ACROSS KNOWN
SOHO DEVICES

Extension # Files # Servers

.jpg 15,962,091 10,187

.mp3 2,443,285 4,912

.pdf 1,010,005 9,825

.avi 955,832 4,954

.gif 762,581 5,291

.png 476,530 5,456

.mp4 456,471 5,797

.doc 440,118 3,924

.html 426,646 5,275

.zip 294,649 6,698

providers as a major source of anonymous FTP servers in
the IPv4 address space. Table VIII shows the most common
file extensions found on devices we can identify as small-
office/home-office devices. Although we will later address the
use of anonymous FTP for pirated content exchanges, we find
that the majority of .mp3, .avi, and .mp4 files appear to be
users’ personal media collections.

Sensitive Documents. We also looked for files from less
common yet more sensitive classes of documents. We find large
numbers of email and financial documents, including more than
12.6K email archives and 7.7K Quicken data files. We show a
breakdown of the most prevalent and likely sensitive files in Ta-
ble IX. We also found instances of what appear to be company-
or office-wide backups on single FTP servers resulting in
occurrences of a single server holding 688 .pst files (Outlook
mailboxes), another with 146 shadow files (Unix password
databases), and a third with years of backups for financial files.
Anecdotally, we observed many other apparent examples of
private information while sifting through our dataset, including
what appeared to be medical records, companies’ bids for
work, and human resource records. Unfortunately, these are
mostly personalized in terms of filename, location, and (likely)
contents, making precise measurement infeasible.

Photo Libraries. A similar pattern emerged for personal
photos, where we found 13.7M photos (12.9M with readable
permissions) with names consistent with the common default
formats for consumer cameras on 17K servers. Based on the
directory paths alone, it appears that these photos provide an
intimate glimpse into users’ personal lives. Weddings, family
reunions, vacations, birthday parties, and more are organized
and available to any voyeur who wishes to look.

Root File Systems Exposed. Many devices look to ex-
pose most of, if not all, of their filesystem over FTP. By looking

for known OS-root directories, we can estimate the number.
Within the same FTP path, we looked for : bin, var, boot, and
etc on Linux; Applications, bin, var, Library and Users
on Mac OS; Program Files, Documents and Settings,
and WINDOWS on early Windows versions; and Windows,
Program Files, and Users on later Windows. With this
approach we found 825 Windows, 3,858 Linux, and 15 OS X
servers with their OS-root exposed.

Scripting Source Code. In the case of hosting providers,
allowing customers to upload and traverse webpages’ source
files is not necessarily a vulnerability, but if it exposes the
source code to server-side scripts, it can drastically reduce
the difficulty of finding vulnerabilities to exploit. Additionally,
any inline configuration files (such as .htaccess) and any
secrets (such as API keys) contained within server-side code
are also shared. In total, we found 189.4K .htaccess files
on 4.5K servers along with 10.2M other server-side scripting
source files on 32K servers.

B. Responsible Devices

When we look to explain the exposure of this sensitive
information, our device fingerprints described in Section IV
shed some light on possible sources. As shown in Table X, we
are able to determine 12.3% of the devices exposing sensitive
user information, pointing to a manufacturer and often a specific
device model. We see two major classes of devices: consumer
NAS devices and consumer-grade “smart” routers. Using this
information, we investigated the user manuals for many of these
devices to determine how and why anonymous FTP might be
enabled and exposed to the Internet.

Consumer NAS Devices. The first of these major classes
is the personal/small-office Network Attached Storage (NAS)
devices previously referenced in Section IV-A and includes
198K devices (18K of which enable anonymous access). Similar
in form to USB external disks enclosures, these devices contain
one or more hard drives and connect to the network via ethernet
or WiFi.

The user manuals for many of these devices provide great
insight as to why they are accessible from the Internet. While
we, as security researchers, recommend that firewalls or NAT be
used to restrict access to user’s internal/trusted home networks,
it is apparently not the recommendation of device manufacturers.
Many of the manuals contain dedicated sections on Accessing
your device from anywhere where they describe how to set up
port forwarding or UPnP sharing on the user’s home router,
how to find the router’s public IP address, and information
about Dynamic DNS providers [12], [33], [40]. Many of

5

TABLE IX. EXAMPLES OF SENSITIVE EXPOSURE VIA ANONYMOUS FTP INCLUDING FILE PERMISSIONS

Type File # Servers # Files # Readable # Non-readable # Unk-readable

Financial Information TurboTax Export 464 8,190 8,139 6 45
Quicken Data 440 7,702 7,652 6 241

Password Databases KeePass/KeePassX 210 1,812 1,762 6 44
1Password 11 24 23 0 1

Key Material SSH host private keys 819 1,597 139 1,427 31
Putty SSH client keys 82 128 98 0 30
“priv” .pem files 701 1,397 1,335 2 60

Other shadow files 590 718 238 473 7
.pst files 2,419 12,636 10,918 103 1,615

TABLE X. BREAKOUT OF DEVICES EXPOSING USER INFORMATION

Type of Exposure Generic
Embedded

Hosting Unk
NAS Router Other

Sensitive Documents 26.29% 7.08% 20.16% 0.18% 0.12% 45.54%
Photo Libraries 39.98% 12.35% 11.52% 0.01% 3.12% 33.00%
Root File Systems 10.54% 0.68% 1.30% 0.00% 0.00% 87.34%
Scripting Source 72.51% 1.74% 3.26% 2.36% 3.48% 16.56%

All 56.05% 4.54% 6.31% 1.45% 3.00% 28.67%

devices display their IP address in their FTP banners, and
we can see from our dataset that many are using private
addresses (192.168.0.0/16, 10.0.0.0/8, etc.), indicating that they
are configured in this way. With few exceptions (e.g., [11]),
these manual sections are devoid of warnings on the hazards
of making a device accessible from the entire Internet. As we
will discuss in Section VIII, even devices without anonymous
access enabled are vulnerable to attackers guessing weak or
default passwords.

With regard to anonymous access, the user manuals are often
ambiguous with regard to permissions and how they apply in
different configurations. The LaCie CloudBox’s description of
the built-in “Family” directory is an example of this. While one
part of the manual explicitly states,“This type of unrestricted
use of a shared folder is called Public Access”, other portions
discuss it in terms of “everyone in the home” or “all the
computers connected to the same router”, giving the impression
that the public access is restricted to the local network [33].
While misleading, this description of “in the home” is not
incorrect. The manual typically describes accessing the device
via SMB, which is not a routable protocol due to it being built
on top of NetBIOS. If accessed via FTP, this directory allows
anonymous access.

Smart Routers. The second class of devices is “smart”
home routers, which, unlike traditional home routers, do much
more than provide basic NAT and firewall features. Such devices
account for 59.9K devices (6.7K with anonymous access).
Among other features, many smart routers include NAS-like
functionality and can expose external USB drives over the
network [35] [5], and others ship with pre-installed internal
hard drives [4].

Unlike NAS devices, home routers are typically on the
edge of the user’s network and do not require port forwarding
to be accessible. Unfortunately, this further lowers the bar
for exposing user information. For a time, ASUS routers
automatically enabled anonymous access for any USB drive
attached to the router [38]. But even without such dangerous
default configurations, routers as a whole are no better than NAS

devices with regard to their documentation. In addition to the
lack of clarity with regard to public access to shares described
above, some routers also suffer from a lack of proper naming
conventions. For example, certain routers include a built-in
firewall rule named, “Filter Anonymous Internet Requests”, yet
this rule actually only blocks anonymous ICMP echo requests
and not anonymous FTP access [34].

VI. MALICIOUS USE

We find several malicious campaigns that leverage world-
writable anonymous FTP to distribute malware, launch DDoS
attacks, and carry out SEO campaigns. During this investigation,
we downloaded a small number of files associated with malware
for analysis. In all instances, the files were hand selected based
on their frequent occurrence across diverse servers or their
frequent co-location with known malicious files.

A. World-writable Determination

We first investigated whether anonymous servers support
file upload through FTP or if our read access simply allows us
to see infections that originated from an unrelated vulnerability.
The most precise way to determine whether a server is world
writable would be to attempt to upload a file to every anonymous
FTP server. However, to reduce the impact of our scans, we
took a more conservative approach and instead looked at the
attributes and behavior of writable servers to create a reference
set of files that indicate that a server allows anonymous write
access.

This set mainly consists of two types of files. The first
type is those indicated by the server as having been uploaded
anonymously. Some servers are configured to allow anonymous
users to upload files, but those files may not be downloaded
until the administrator changes the file’s ownership. Pure-
FTPd explicitly confirms that certain files were uploaded by
responding to relevant RETR commands with “This file has
been uploaded by an anonymous user. It has not
yet been approved for downloading by the site
administrators.” The second type is files that are parts of

6

write-probing campaigns. The three most pervasive probing
campaigns upload files named w0000000t.[txt/php],
sjutd.txt, and hello.world.txt. Each file contains
a simple string such as “Anonymous”, “test”, random
characters, or a small amount of base64-encoded data. It
appears that the attackers attempt to upload these probe files
prior to uploading their attack payloads.

In addition to these two types, there are also smaller
cases where a file was added to the reference set due to the
behavior of certain server implementations. Specifically, some
configurations allow anonymous users to upload files, but not
delete or overwrite existing files. When a second file with the
same name is uploaded, an incrementing number is appended
to the end of the filename resulting in the set of files “name”,
“name.1”, “name.2”, etc. being seen on a server. Although
this behavior is heuristically testable, many other files use
this format and are not related to FTP or anonymous upload.
Therefore, we do not add all files which match this format to
our reference set.

As seen in Figure 1, we find 19.4K servers in 3.4K ASes
that appear to be world-writable. We note that this is a lower
bound given that not all servers will have been found by
a write probing campaign or previously had files uploaded
anonymously. An attacker’s software could fail to handle certain
quirks, the attackers may not have targeted the entire IPv4
address space, the flux of IPv4 may have resulted in the
attackers (or ourselves) not finding certain servers, or, as we
will show in Section VIII, attackers might remove the evidence
of their probing.

B. Leveraging Server-side Scripting

As discussed in Section V, many anonymous FTP servers
provide anonymous access to the web root. To estimate the
number of hosts that serve both FTP and a web server, we
used the results of an HTTP scan supplied by Censys [19]
from the same time period as our enumeration. In total,
9.0M IP addresses (65.27% of all FTP servers) contain
both a web-server and an FTP server. Of these, 2.1M IPs
(15.01% of FTP servers) indicate that they support server-side
scripting by returning either the “X-Powered-By: PHP” or
“X-Powered-By: ASP.NET” HTTP header.

We find that attackers are aware of this and have been
using this overlap for quite some time. The most direct usage
we find is that attackers leverage server-side scripting for
Remote Access Tools (RATs). These RATs vary from the
extremely complicated and fully featured to a single line of
“<?php eval($_POST[5]);?>”. It appears common practice
to upload these files across the filesystem to improve the
chances of landing in the web root. While we see many different
variations, only a few can be sourced to FTP with our world-
writable methodology. Restricted to only the RATs in our
reference set, we find 6K RAT related files on 724 servers.

We also found evidence of attackers using anonymous
FTP to set up UDP DDoS infrastructure. Two campaigns,
history.php and phzLtoxn.php, appear to be the most
widespread. Both are simple PHP scripts which receive a target
host/port and time length from the GET parameters and send
65kB UDP packets as fast as possible for the specified length
of time. We found 1,792 servers infected with these campaigns.

It appears that some campaigns involve multiple stages
that upload incrementally more complicated server-side scripts
as they gain more information about their new victim. The
ftpchk3 campaign is likely a four-stage campaign that operates
in this manner. The first stage is a small ftpchk3.txt file
which is likely a write probe. The second stage consists of
a ftpchk3.php script which simply echos the text “OK”—
likely to determine whether the attacker can access a directory
served by a server-side scripting engine. The third stage is
a second ftpchk3.php script that gathers information such
as PHP version, loaded extensions, and what, if any, Content
Management System is used. We believe that there is a fourth
stage which uses the information gained to act maliciously, but
our dataset does not allow us to conclusively assert what that
is. In all, we found 1,264 servers in some state of infection by
the ftpchk3 campaign.

While not within our reference set, one especially interesting
find is the Holy Bible SEO campaign. This campaign uses the
PHP scripting engine to search the victim’s filesystem for web
files (e.g., HTML, PHP, and ASP files), in which it injects
href tags. Additionally, it spreads itself across the filesystem
and deletes any file with extensions such as .bak, .zip, .apk,
and .msi. This campaign is difficult to heuristically search
for due to its use of extremely common file names such as
index.php and its many different versions. Our best heuristic
comes from an ancillary file which appears to be the attackers
“tag” named Holy-Bible.html. This file is not involved in
the maliciousness, but appears frequently with the malicious
files and shares identifying strings with the malicious files. We
find 1,131 servers that contain this file, and 55.35% of these
servers also have one or more of our reference set of files that
denote that the server is world-writable.

C. Other Campaigns

During our investigation, we also discovered a set of
other campaigns. One of the oddest is an apparent advertising
campaign for a “really cool software cracking service” [1], in
which .pdf and .ps fliers are uploaded to world-writable FTP
servers and explain that the proprietors are willing to create
keygens and dongle emulators to enable pirating software.
Readers are to contact the service via Bitmessage [8] or e-
mail, and the service charges either $300 or $500. We found
2,095 servers that contain the campaign’s fliers. Ramnit, a
botnet, is known to use an anonymous FTP server to give
its masters easy access to the victim’s filesystem. Although
Symantec reports that Ramnit’s FTP server uses port 22,
we discovered 1,051 FTP servers on TCP/21 that carry the
malware’s FTP banner of “220 220 RMNetwork FTP” [39].
None allowed our enumerator to anonymously authenticate.

We also find attackers sharing “WaReZ” data—pirated
software and media. While a large amount of music and
movies are available over anonymous FTP, much of it appears
to be personal libraries, which are exposed along with other
information as described in Section V. But one data transport
campaign bears a signature that allows us to identify it. This
campaign is identified by the directory names that it uses for
storage—2-digit year of upload + 2-digit month + 2-digit day
+ 6-digit time + “p”. Overall, there appear to be 4,868 servers
which were at one time used by this campaign, but many of the
directories are empty. We do not know if these were abandoned

7

TABLE XI. NUMBER OF SERVERS VULNERABLE TO CVES

Implementation Vulnerability CVSS Score Number IPs

ProFTPD CVE-2015-3306 10.0 300,931
CVE-2013-4359 5.0 24,420
CVE-2012-6095 1.2 1,098,629
CVE-2011-4130 9.0 646,072
CVE-2011-1137 5.0 646,072

Pure-FTPD CVE-2011-1575 5.8 3,305
CVE-2011-0418 4.0 3,309

vsFTPD CVE-2015-1419 5.0 658,767
CVE-2011-0762 4.0 125,090

Serv-U CVE-2011-4800 9.0 244,060

upload sites or if the content was deleted after it was shuffled
between actors.

VII. CASE STUDY— KNOWN VULNERABILITIES

In this section, we present estimates of the number of
servers that are currently subject to exploitation using known
vulnerabilities.

A. CVEs

We analyzed the version strings presented in FTP banners
and find that more than one million servers are vulnerable
to common knownly attacks. We show a breakdown of IPs
vulnerable to each CVE in Table XI. For ethical reasons, we
did not exploit any vulnerabilities on the hosts.

B. PORT bouncing

As discussed in Section II, the PORT command supplies an
IP address and port to the server which then initiates a TCP
connection back to that IP (assumed to be the client). If a
server does not verify that the requested data channel’s client
IP address is the same as the control channel’s, then the server
can be used to connect to a 3rd party on the attacker’s behalf.
This vulnerability is well known and has been publicly noted
by CERT since as early as 1997 [13] and we can easily check
whether servers support properly validate the PORT command
arguments.

By sending a PORT command specifying a different IP
address that we control, we can probe whether each anonymous
FTP server is vulnerable. We found 143,073 FTP servers
(12.74% of anonymous FTP servers) failed to properly validate
PORT parameters and created a TCP connection to an IP address
other than the control channel’s. The vast majority of these
servers (71.5%) are within AS12824 home.pl S.A. and likely
originate from the home.pl hosting service’s default software.
In addition, the FileZilla FTP server implementation failed to
properly validate PORT commands in all releases from January
1, 2003 until May 6, 2015 [31]. Although not all allowed
anonymous access and thereby allowing us to test, we found
409K Filezilla implementations on the IPv4 address space of
which the majority are likely exploitable after login.

The most straightforward use of this vulnerability is to
perform anonymous port scans. While this is useful to attackers,
it can be combined with more subtle techniques to create more
powerful attacks. For example, if the FTP server is within an
otherwise inaccessible network, an attacker can use the PORT

command to port scan the internal network. To measure this,
we checked servers’ responses to the PASV request and for an
IP address different than that which we originally connected
to, indicating it was behind a NAT. We found 18,947 servers
behind a NAT, of which 846 do not properly validate PORT
parameters. Another way to leverage servers that fail to validate
PORT arguments is the classic “Bounce Attack” in which the
attacker induces the FTP server to conduct application-level
interaction with a third-party. For example, the attacker can
combine the PORT command with a world writable filesystem
to coerce the server to send FTP or SMTP commands to a third
party, by uploading a file containing the sequence of commands
and then PORT bouncing it to third-party server [3]. We found
1,973 servers which are both world-writable and fail to properly
check the parameters of the PORT command.

VIII. CASE STUDY— ONGOING MALICIOUSNESS

To detect other attacks, we ran eight FTP honeypots
that expose anonymous, world-writable FTP servers for three
months. We worked to be reactionary to attackers’ behavior:
after observing attackers’ attempts to blindly traverse certain
file paths, we created those paths and populated them with
representative files in order to observer the attackers’ behavior
the next time they probed our honeypots.

A. Results

In total, we observed 457 unique IP addresses scanning
TCP/21. Interestingly, over 30% come from the “China Unicom
Henan Province Network” AS. 85 IPs spoke FTP to our
honeypots, with most of the remainder attempting to fetch the
root webpage via the HTTP GET command. 16 IPs attempted
to traverse directories and 21 listed the contents of directories;
in both cases, some were blind traversals.

In total, we observed over 1,400 unique username-password
combinations used to attempt to authenticate. While most of
these were simple attempts at guessing weak passwords, we
also saw evidence of attempts with default passwords. We
did observe one attempt to exploit CVE-2015-3306 [15], one
attempt to exploit a Seagate devices’ lack of a root password
to upload a RAT [24], and 8 addresses testing whether they
could exploit the PORT bounce attack. All eight PORT bounce
attempts targeted the same 3rd party IP indicating that they
were potentially part of the same campaign.

B. Analysis

Compared to the number of malicious files we found in our
crawling, there were surprisingly few attacks on our honey pots.
One possible reason for this is the historical nature of FTP.
In other words, we may be seeing remnants of past malicious
campaigns on servers that remain online today. In one case, we
found files consistent with the dsns network scanner [18] from
early as 2004. That said, while we do not see many instances
of active maliciousness, those that we see are in line with
our analysis. We find several campaigns looking for world-
writable FTP servers, in which clients attempted to upload
and then delete the hello.world.txt write probe on our
honey-pots. We also observed attackers searching for web-root
directories such as cgi-bin, www, and public_html. This
further validates that attackers are cognizant of and actively

8

looking for directories which may be useful for server-site
scripting attacks.

We also note 36 IPs issued the AUTH command and
attempted to complete TLS handshakes, likely to identify
devices by certificate. We also see behavior consistent with the
WaReZ transporters from Section VI—we observed attempts
to create directories with no data uploaded to them.

The questions of whether these attacks are malicious or
academic exists. We saw both explicit evidence of both: some
IPs were nearly identically configured compared to ours with
landing pages describing scanning research while others are
testing PORT validation from Tor Exit Nodes. Most IPs provide
no indication of their intention.

IX. CASE STUDY— FTPS IMPACT

FTPS was created in an attempt to bolt on security to the
FTP protocol. The client signals that it wishes to use FTPS
by sending the AUTH SSL or AUTH TLS request to the server.
After the server responds positively, both sides conduct a TLS
handshake to secure the connection before continuing with
the standard FTP protocol inside of the TLS connection. By
conducting this negotiation, users are able to protect their
username and password combinations as well as any data being
transferred.

During our enumeration, we found that 3.4M FTP servers
(25%) support FTPS, but less than 85K require it before
authentication. Looking for an explanation for this low rate,
we surveyed popular web browsers and built-in command line
tools on OS X, Linux, and Windows. To our surprise, we found
that not a single one supported FTPS. When a server requires
the connection to be secure before accepting the USER request,
these built-in clients disconnect. Third party FTP clients that
support FTPS are available for all three major OSs. Even in
the case that both the client and the server support FTPS, the
security provided is less than would be expected. 1.7M (50%)
of the sites that support FTPS use self-signed certificates, which
provide no way for the client to check the identity of the server.
Although some third-party clients can pin certificates internally,
there still exists a trust-on-first-use authentication vulnerability.

Surprisingly„ there are only 793K unique certificates across
all 3.4M servers that support FTPS. This appears to be due
to two reasons. First, hosting providers commonly use their
browser-trusted wildcard SSL certificate on all shared-hosting
servers. Second, device manufacturers are deploying identical
certificates on all their devices. We show the most common
certificates in Table XII and the most common certificates
shipped with devices in Table XIII. Because each of these
devices uses the same certificate and key, an adversary could
extract the private key from any device to Man-in-the-Middle
other connections.

X. DISCUSSION

The kinds of vulnerabilities we highlight in this paper are
not new. Password-less login vulnerabilities, WaReZ shuffling,
and port bouncing have been exploited for practically the life
of FTP. Yet we found that a large number of servers are still
vulnerable to these problems, and they continue to be actively
exploited by malicious actors. Part of the reason for this may

TABLE XII. TOP 10 MOST COMMON FTPS CERTIFICATES

Certificate CN # Servers Browser-trusted?

*.opentransfer.com 193,392 Yes
*.securesites.com 134,891 Yes
*.home.pl 125,197 Yes
*.bluehost.com 59,979 Yes
localhost 47,887 No – self-signed
ftp.Serv-U.com 26,209 No – self-signed
*.bizmw.com 26,172 Yes
*.turnkeywebspace.com 22,075 Yes
ispgateway.de 19,355 No – self-signed
*.sakura.ne.jp 17,495 Yes

TABLE XIII. DEVICES THAT SHARE FTPS CERTIFICATES

Device # Found

QNAP NAS (#1) 11,236
ZyXEL Unk 8,402
Buffalo NAS 7,365
LGE NAS 6,220
Axentra HipServ 2,965
RhinoSoft 1,835
Symon Media Player 606
QNAP NAS (#2) 615
AsusTor NAS 367

be inattention. While security researchers are focused on more
modern and widespread protocols, such as HTTPS and Bitcoin,
older and more basic protocols such as FTP have not gone
away and have not become any more secure.

As we described in Section V, consumer devices with
embedded FTP servers appear to be compounding the problem.
Users seeking remote access to their data may expose FTP
on public IP addresses without understanding the security
consequences. Worse, at least some devices have confusingly
named options for enabling anonymous FTP, and others
appear to come with it enabled by default. We urge device
manufacturers to re-examine their defaults, user interfaces, and
documentation in order to effectively inform users that these
configurations will provide global public access to their data.
While usable security is difficult to achieve, research has shown
that well designed notifications can improve users’ adherence
to browser security warnings [25], and consumer server devices
may benefit by following a similar strategy. As the Internet
of Things continues to expand and the move towards IPv6
continues—increasing the number of world-addressable devices
a consumer owns—this will likely become a growing problem.

Some of the most difficult cases to make sense of are devices
that come with anonymous FTP enabled by default. It seems
that either these manufacturers do not understand the dangers
associated with data exposure from anonymous FTP or they
are acting with reckless disregard for their customers’ security
and privacy. Either way, an effective remedy may be to create
stronger incentives for manufacturers of consumer devices to
take security seriously. This may be an ideal instance for an
external organization such as a “CyberUL” to provide a quality
certification that a particular device provides at least a minimal
amount of security protections to the end-consumer [16]. While
creating a comprehensive suite of security tests is still an open
research problem, it would be easy to test for well known and
often exploited vulnerabilities such as anonymous logins and
port bouncing.

9

XI. RELATED WORK

FTP has been largely ignored by the security measurement
community and, to the best of our knowledge, this study is the
first that focuses on how anonymous FTP has been deployed in
practice. There have, however, been several recent studies that
employed Internet-wide scanning, that investigated the security
of embedded devices, or that identified how poor cross-protocol
interactions can lead to attacks similar to the ones we observed.

Internet-wide Scanning A large number of studies have
used Internet-wide scanning to measure real-world protocol
deployment and to uncover flaws in cryptographic protocols [2],
[14], [20], [21], [28], [30], [32]. However, for the most part, the
security community has studied previously topical protocols,
e.g., TLS and SSH. Similarly, there have been several recent
papers that introduced tools for performing Internet-wide scans
(e.g., ZMap [23]). We develop a new FTP enumerator but build
on existing tools, using ZMap to perform host discovery. The
work most related to FTP scanning is FTP Map, which attempts
to detect FTP vulnerabilities based on server behavior [27]. Our
goals differ significantly as we are trying to enumerate the file
structure of FTP servers. There exists an online search engine
for FTP servers, Napalm FTP Indexer [37], which contains
files from 17K FTP servers. In comparison, our scan revealed
1.1M anonymous FTP servers.

Embedded Device Security While there is considerable
anecdotal evidence of security issues plaguing embedded
devices, there has been little systematic analysis of how these
vulnerabilities affect real-world users. Our study investigates
one protocol that has been commonly deployed by embedded
devices, but other protocols likely suffer from similar issues. In
a few recent examples, Durumeric et al. found that embedded
devices did not patch in response to the OpenSSL Heartbleed
bug [22], Heninger et al. found that embedded devices lacked
the entropy needed to generate secure cryptographic keys [30],
and Bokoski et al. found that SuperMicro devices suffered from
elementary security vulnerabilities (e.g., trivial buffer overflows)
and were publicly accessible [10].

Launching Attacks Previous research has explored the risk
of devices interacting with the same resource through multiple
channels. Bojinov introduced the concept of Cross Channel
Scripting (XCS), in which an attacker injects malicious content
into web content over a secondary protocol (e.g., SMB or
FTP) [9]. Several of the malicious use cases we see (e.g., SEO
and DDoS attacks) are instances of this where FTP is being
used as the secondary communication channel.

XII. CONCLUSION

In this study, we presented a comprehensive analysis of how
anonymous FTP has been deployed in the real world. We found
that despite the protocol being largely forgotten by the research
community, there are more than 13.8M FTP servers on the IPv4
address space, of which 1.1M (8%) allow anonymous access.
Unfortunately, many anonymous FTP servers expose sensitive
data, ranging from cryptographic secrets to confidential financial
documents. We fingerprinted servers hosting this data and found
that many are consumer devices (e.g., home NAS devices) that
expose data over anonymous FTP by default or fail to explain
the risks of enabling anonymous FTP. We further uncovered
evidence that nearly 20K FTP servers allow anonymous users

to write data, which malicious actors are using for malware
deployment, and click fraud, and DDoS attacks. Our study
presents a grim portrait of how FTP is deployed in 2015, but
we hope that shedding light on the issue will prompt the security
community to begin to address these vulnerabilities.

ACKNOWLEDGMENTS

The authors wish to thank Mudge Zatko for helping motivate
this analysis and providing insight into possible threats. We
thank the exceptional IT staff at the University of Michigan for
their help and support, including Chris Brenner, Kevin Cheek,
Laura Fink, Dan Maletta, Jeff Richardson, Don Winsor, Donald
Welch, and others from ITS, CAEN, and DCO. This material
is based in part upon work supported by the U.S. National
Science Foundation under grants CNS-1345254, CNS-1409505,
and CNS-1518888, by the NSF Graduate Research Fellowship
Program under grant DGE-1256260, by the Post-9/11 GI Bill,
by the Google Ph.D. Fellowship in Computer Security, and by
an Alfred P. Sloan Foundation Research Fellowship.

REFERENCES

[1] http://www.bitwixen.com.
[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.

Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Vander-
Sloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann. Imperfect
forward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM
Conference on Computer and Communications Security, Oct. 2015.

[3] M. Allman and S. Ostermann. FTP security considerations. RFC 2577,
May 1999.

[4] ASUS. WL-700gE user manual, July 2006. http://dlcdnet.asus.com/pub/
ASUS/wireless/WL-700g/WL700gE_manual_E2393_high.zip.

[5] ASUS. User guide RT-AC68R, Aug. 2013. http://dlcdnet.asus.com/pub/
ASUS/wireless/RT-AC68R/E8617_RT_AC68R_Manual_English.pdf.

[6] S. Bellovin. Firewall-Friendly FTP. RFC 1579 (Informational), Feb.
1994.

[7] A. Bhushan. File Transfer Protocol. RFC 114, Apr. 1971. Updated by
RFCs 133, 141, 171, 172.

[8] Bitmessage Wiki. https://bitmessage.org/wiki/Main_Page.
[9] H. Bojinov, E. Bursztein, and D. Boneh. XCS: Cross channel scripting

and its impact on web applications. In 16th ACM Conference on
Computer and Communications Security, Oct. 2009.

[10] A. Bonkoski, R. Bielawski, and J. A. Halderman. Illuminating the
security issues surrounding lights-out server management. In 8th USENIX
Workshop on Offensive Technologies, Aug. 2013.

[11] Buffalo. Buffalo Linkstation FTP setup guide. http://site2.buffalotech.
com/downloads/FTP%20Setup%20Guide.pdf.

[12] Buffalo. Linkstation 400 user manual, June 2015. http://manual.buffalo.
jp/buf-doc/35020812-02_EN.pdf.

[13] CERT. FTP Bounce. CERT Advisory CA-1997-27, Dec. 1997. https://
www.cert.org/historical/advisories/ca-1997-27.cfm.

[14] S. Checkoway, M. Fredrikson, R. Niederhagen, A. Everspaugh, M. Green,
T. Lange, T. Ristenpart, D. J. Bernstein, J. Maskiewicz, and H. Shacham.
On the practical exploitability of Dual EC in TLS implementations. In
23rd USENIX Security Symposium, Aug. 2014.

[15] CVE-2015-3306, Apr. 2015. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-3306.

[16] Dark Tangent. Cyberspace Underwriters Laboratories, Jan. 1999. https://
dl.packetstormsecurity.net/docs/infosec/cyberul.html.

[17] P. Deutsch, A. Emtage, and A. Marine. How to use Anonymous FTP.
RFC 1635, May 1994.

[18] DSNS network scanner. http://www.dsns.net/.
[19] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman.

A search engine backed by Internet-wide scanning. In 22nd ACM
Conference on Computer and Communications Security, Oct. 2015.

10

http://www.bitwixen.com
http://dlcdnet.asus.com/pub/ASUS/wireless/WL-700g/WL700gE_manual_E2393_high.zip
http://dlcdnet.asus.com/pub/ASUS/wireless/WL-700g/WL700gE_manual_E2393_high.zip
http://dlcdnet.asus.com/pub/ASUS/wireless/RT-AC68R/E8617_RT_AC68R_Manual_English.pdf
http://dlcdnet.asus.com/pub/ASUS/wireless/RT-AC68R/E8617_RT_AC68R_Manual_English.pdf
https://bitmessage.org/wiki/Main_Page
http://site2.buffalotech.com/downloads/FTP%20Setup%20Guide.pdf
http://site2.buffalotech.com/downloads/FTP%20Setup%20Guide.pdf
http://manual.buffalo.jp/buf-doc/35020812-02_EN.pdf
http://manual.buffalo.jp/buf-doc/35020812-02_EN.pdf
https://www.cert.org/historical/advisories/ca-1997-27.cfm
https://www.cert.org/historical/advisories/ca-1997-27.cfm
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3306
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3306
https://dl.packetstormsecurity.net/docs/infosec/cyberul.html
https://dl.packetstormsecurity.net/docs/infosec/cyberul.html
http://www.dsns.net/

[20] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman.
Neither snow nor rain nor mitm: An empirical analysis of email delivery
security. In 15th ACM Internet Measurement Conference, pages 27–39.
ACM, 2015.

[21] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of
the HTTPS certificate ecosystem. In 13th ACM Internet Measurement
Conference, Oct. 2013.

[22] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman. The
matter of Heartbleed. In 14th ACM Internet Measurement Conference,
Nov. 2014.

[23] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide scanning and its security applications. In 22nd USENIX Security
Symposium, Aug. 2013.

[24] Exploit4Arab. Seagate Central FTP root access. http://www.exploit4arab.
net/exploits/1530.

[25] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes. Improving SSL warnings:
Comprehension and adherence. In 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 2893–2902. ACM, 2015.

[26] P. Ford-Hutchinson. Securing FTP with TLS. RFC 4217, Oct. 2005.
[27] FTP-Map. https://github.com/Hypsurus/ftpmap.
[28] O. Gasser, R. Holz, and G. Carle. A deeper understanding of SSH:

results from Internet-wide scans. In 2014 Symposium on Network and
Distributed System Security, Feb. 2014.

[29] Google. Robots.txt specification. https://developers.google.com/
webmasters/control-crawl-index/docs/robots_txt.

[30] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining
your Ps and Qs: Detection of widespread weak keys in network devices.
In 21st USENIX Security Symposium, Aug. 2012.

[31] A. Klein. Filezilla FTP server is vulnerable to FTP PORT bounce
attack and PASV connection theft. http://www.securitygalore.com/site3/
filezilla_ftp_server_advisory.

[32] M. Kranch and J. Bonneau. Upgrading HTTPS in mid-air: An empirical
study of strict transport security and key pinning. In 2015 Network and
Distributed System Security Symposium, Feb. 2015.

[33] LaCie. CloudBox user manual. http://manuals.lacie.com/EN/manuals/
cb/01_intro/start.

[34] Linksys. Overview of the security tool in Linksys Smart Wi-Fi. http://
www.linksys.com/us/support-article?articleNum=140559.

[35] Linksys. Quick USB storage setup guide for Linksys storage link routers.
http://www.linksys.com/eg/support-article?articleNum=142291.

[36] N. Mathewson and N. Provos. LibEvent: An event notification library.
http://libevent.org.

[37] Napalm FTP indexer. http://www.searchftps.net/.
[38] P. Paganini. ASUS routers setting could expose users’ data on Internet.

Security Affairs, Jan. 2014. http://securityaffairs.co/wordpress/21212/
hacking/asus-routers-hack.html.

[39] Symantec. W32.Ramnit analysis, Feb. 2015. https://www.symantec.com/
content/en/us/enterprise/media/security_response/whitepapers/
w32-ramnit-analysis.pdf.

[40] Synology. Synology NAS user’s guide. http://global.
download.synology.com/download/Document/UserGuide/DSM/
5.2/Syno_UsersGuide_NAServer_enu.pdf.

11

http://www.exploit4arab.net/exploits/1530
http://www.exploit4arab.net/exploits/1530
https://github.com/Hypsurus/ftpmap
https://developers.google.com/webmasters/control-crawl-index/docs/robots_txt
https://developers.google.com/webmasters/control-crawl-index/docs/robots_txt
http://www.securitygalore.com/site3/filezilla_ftp_server_advisory
http://www.securitygalore.com/site3/filezilla_ftp_server_advisory
http://manuals.lacie.com/EN/manuals/cb/01_intro/start
http://manuals.lacie.com/EN/manuals/cb/01_intro/start
http://www.linksys.com/us/support-article?articleNum=140559
http://www.linksys.com/us/support-article?articleNum=140559
http://www.linksys.com/eg/support-article?articleNum=142291
http://libevent.org
http://www.searchftps.net/
http://securityaffairs.co/wordpress/21212/hacking/asus-routers-hack.html
http://securityaffairs.co/wordpress/21212/hacking/asus-routers-hack.html
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32-ramnit-analysis.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32-ramnit-analysis.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32-ramnit-analysis.pdf
http://global.download.synology.com/download/Document/UserGuide/DSM/5.2/Syno_UsersGuide_NAServer_enu.pdf
http://global.download.synology.com/download/Document/UserGuide/DSM/5.2/Syno_UsersGuide_NAServer_enu.pdf
http://global.download.synology.com/download/Document/UserGuide/DSM/5.2/Syno_UsersGuide_NAServer_enu.pdf

	Introduction
	Background
	Methodology
	Ethical Considerations

	FTP Landscape
	Who is Deploying FTP?

	Over Exposure
	Data Exposure
	Responsible Devices

	Malicious Use
	World-writable Determination
	Leveraging Server-side Scripting
	Other Campaigns

	Case Study—Known Vulnerabilities
	CVEs
	PORT bouncing

	Case Study—Ongoing Maliciousness
	Results
	Analysis

	Case Study—FTPS Impact
	Discussion
	Related Work
	Conclusion
	References

